Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We will explain how to use a variant of Deligne's skeleton conjecture in characteristic 0 to prove the existence of an algebraic variety parametrizing Stokes torsors. We will show how the geometry of this moduli can be used to prove new finiteness results on differential equations.
[-]
In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We ...
[+]
32C38 ; 14F10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan and Pavel Safronov concerning a q-analogue of these ideas. The applications include an approach towards Witten's conjecture on the fi dimensionality of skein modules, and methods for computing these dimensions in certain cases.
[-]
I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan ...
[+]
14F10 ; 14D23
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give a general introduction to the study of the Hodge filtration on local cohomology sheaves associated to closed subschemes of smooth complex varieties, using techniques from both D-module theory and birational geometry. In the case of hypersurfaces, this is essentially the theory of Hodge ideals, which I will recall. This study has applications to various topics, like local vanishing, local cohomological dimension, the Du Bois complex, minimal exponents of singularities, etc. I will discuss a few, and more will appear in M. Mustaja's lecture.
[-]
I will give a general introduction to the study of the Hodge filtration on local cohomology sheaves associated to closed subschemes of smooth complex varieties, using techniques from both D-module theory and birational geometry. In the case of hypersurfaces, this is essentially the theory of Hodge ideals, which I will recall. This study has applications to various topics, like local vanishing, local cohomological dimension, the Du Bois complex, ...
[+]
14B05 ; 14F10 ; 32S35 ; 14F17