En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05D10 11 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Borel sets of Rado graphs are Ramsey - Dobrinen, Natasha (Author of the conference) | CIRM H

Multi angle

The Galvin-Prikry theorem states that Borel partitions of the Baire space are Ramsey. Thus, given any Borel subset $\chi$ of the Baire space and an infinite set $N$, there is an infinite subset $M$ of $N$ such that $\left [M \right ]^{\omega }$ is either contained in $\chi$ or disjoint from $\chi$ . In their 2005 paper, Kechris, Pestov and Todorcevic point out the dearth of similar results for homogeneous relational structures. We have attained such a result for Borel colorings of copies of the Rado graph. We build a topological space of copies of the Rado graph, forming a subspace of the Baire space. Using techniques developed for our work on the big Ramsey degrees of the Henson graphs, we prove that Borel partitions of this space of Rado graphs are Ramsey.[-]
The Galvin-Prikry theorem states that Borel partitions of the Baire space are Ramsey. Thus, given any Borel subset $\chi$ of the Baire space and an infinite set $N$, there is an infinite subset $M$ of $N$ such that $\left [M \right ]^{\omega }$ is either contained in $\chi$ or disjoint from $\chi$ . In their 2005 paper, Kechris, Pestov and Todorcevic point out the dearth of similar results for homogeneous relational structures. We have ...[+]

05D10 ; 03C15 ; 03E75

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An update on the sum-product problem in $\mathbb{R}$ - Stevens, Sophie (Author of the conference) | CIRM H

Virtualconference

Discussing recent work joint with M. Rudnev [2], I will discuss the modern approach to the sum-product problem in the reals. Our approach builds upon and simplifies the arguments of Shkredov and Konyagin [1], and in doing so yields a new best result towards the problem. We prove that
$max(\left | A+A \right |,\left | A+A \right |)\geq \left | A \right |^{\frac{4}{3}+\frac{2}{1167}-o^{(1)}}$ , for a finite $A\subset \mathbb{R}$. At the heart of our argument are quantitative forms of the two slogans ‘multiplicative structure of a set gives additive information', and ‘every set has a multiplicatively structured subset'.[-]
Discussing recent work joint with M. Rudnev [2], I will discuss the modern approach to the sum-product problem in the reals. Our approach builds upon and simplifies the arguments of Shkredov and Konyagin [1], and in doing so yields a new best result towards the problem. We prove that
$max(\left | A+A \right |,\left | A+A \right |)\geq \left | A \right |^{\frac{4}{3}+\frac{2}{1167}-o^{(1)}}$ , for a finite $A\subset \mathbb{R}$. At the heart of ...[+]

11N99 ; 11F99 ; 11B75 ; 11B30 ; 05D10

Bookmarks Report an error