En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 18D10 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Deciding whether two one-dimensional subshifts are conjugate remains one of the most important question in symbolic dynamics. In this talk, we will highlight a new approach, using the diagrammatic calculus approach popular in category theory and especially in categorical quantum mechanics. We will explain how matrices (and subshifts of finite type) can be represented graphically and how this representation may help us find new conjugacy invariants.[-]
Deciding whether two one-dimensional subshifts are conjugate remains one of the most important question in symbolic dynamics. In this talk, we will highlight a new approach, using the diagrammatic calculus approach popular in category theory and especially in categorical quantum mechanics. We will explain how matrices (and subshifts of finite type) can be represented graphically and how this representation may help us find new conjugacy ...[+]

37B10 ; 18D10 ; 16W30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The coherent Satake category - Williams, Harold (Author of the conference) | CIRM H

Multi angle

The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and its monoidal product is not symmetric. We show however that it is rigid and admits renormalized r-matrices similar to those appearing in the theory of quantum loop or KLR algebras. Applying the framework developed by Kang-Kashiwara-Kim-Oh in their proof of the dual canonical basis conjecture, we use these results to show that the coherent Satake category of $GL_n$ is a monoidal cluster categorification in the sense of Hernandez-Leclerc. This clarifies the physical meaning of the coherent Satake category: simple perverse coherent sheaves correspond to Wilson-'t Hooft operators in $\mathcal{N} = 2$ gauge theory, just as simple perverse sheaves correspond to 't Hooft operators in $\mathcal{N} = 4$ gauge theory following the work of Kapustin-Witten. Our results also explain the appearance of identical quivers in the work of Kedem-Di Francesco on $Q$-systems and in the context of BPS quivers. More generally, our construction of renormalized r-matrices works in any chiral $E_1$-category, providing a new way of understanding the ubiquity of cluster algebras in $\mathcal{N} = 2$ field theory: the existence of renormalized r-matrices, hence of iterated cluster mutation, is a formal feature of such theories after passing to their holomorphic-topological twists. This is joint work with Sabin Cautis (arXiv:1801.08111).[-]
The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and ...[+]

14D24 ; 14F05 ; 14M15 ; 18D10 ; 13F60 ; 17B37 ; 81T13

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will give an overview of known results on the stable cohomology of the automorphism groups of free groups with twisted coefficients. After explaining the notion of wheeled PROPs, I will describe a wheeled PROP structure on the stable cohomology of automorphism groups of free groups with some particular coefficients. I will explain how cohomology classes, constructed previously by Kawazumi, can be interpreted using this wheeled PROP structure and I will construct a morphism of wheeled PROPs from a PROP given in terms of functor homology and the wheeled PROP evoked previously. This is joint work with Nariya Kawazumi.[-]
In this talk, I will give an overview of known results on the stable cohomology of the automorphism groups of free groups with twisted coefficients. After explaining the notion of wheeled PROPs, I will describe a wheeled PROP structure on the stable cohomology of automorphism groups of free groups with some particular coefficients. I will explain how cohomology classes, constructed previously by Kawazumi, can be interpreted using this wheeled ...[+]

20J06 ; 18D10 ; 20F28

Bookmarks Report an error