En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53-04 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the goals of shape analysis is to model and characterise shape evolution. We focus on methods where this evolution is modeled by the action of a time-dependent diffeomorphism, which is characterised by its time-derivatives: vector fields. Reconstructing the evolution of a shape from observations then amounts to determining an optimal path of vector fields whose flow of diffeomorphisms deforms the initial shape in accordance with the observations. However, if the space of considered vector fields is not constrained, optimal paths may be inaccurate from a modeling point of view. To overcome this problem, the notion of deformation module allows to incorporate prior information from the data into the set of considered deformations and the associated metric. I will present this generic framework as well as the Python library IMODAL, which allows to perform registration using such structured deformations. More specifically, I will focus on a recent implicit formulation where the prior can be expressed as a property that the generated vector field should satisfy. This imposed property can be of different categories that can be adapted to many use cases, such as constraining a growth pattern or imposing divergence-free fields.[-]
One of the goals of shape analysis is to model and characterise shape evolution. We focus on methods where this evolution is modeled by the action of a time-dependent diffeomorphism, which is characterised by its time-derivatives: vector fields. Reconstructing the evolution of a shape from observations then amounts to determining an optimal path of vector fields whose flow of diffeomorphisms deforms the initial shape in accordance with the ...[+]

68U10 ; 49N90 ; 49N45 ; 51P05 ; 53-04 ; 53Z05 ; 58D30 ; 65D18 ; 68-04 ; 92C15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera également toutes les opérations sur les variétés pseudo-riemanniennes (variétés dotées d'un tenseur métrique) : connexion de Levi-Civita, courbure, géodésiques, isomorphismes musicaux et dualité de Hodge.Dans ce cours, nous introduirons tout d'abord la problématique du calcul tensoriel formel, en distinguant le calcul dit “abstrait” du calcul explicite. C'est ce dernier qui nous intéresse ici. Il se ramène in fine au calcul symbolique sur les composantes des champs tensoriels dans un champ de repères, ces composantes étant exprimées en termes des coordonnées d'une carte donnée.
Nous discuterons alors d'une méthode de calcul tensoriel générale, valable sur l'intégralité d'une variété donnée, sans que l'utilisateur ait à préciser dans quels champs de repères et avec quelles cartes doit s'effectuer le calcul. Cela suppose que la variété soit couverte par un atlas minimal, défini carte par carte par l'utilisateur, et soit décomposée en parties parallélisables, i.e. en ouverts couverts par un champ de repères. Ces contraintes étant satisfaites, un nombre arbitraire de cartes et de champs de repères peuvent être introduits, pourvu qu'ils soient accompagnés des fonctions de transition correspondantes.
Nous décrirons l'implémentation concrète de cette méthode dans SageMath ; elle utilise fortement la structure de dictionnaire du langage Python, ainsi que le schéma parent/élément de SageMath et le modèle de coercition associé. La méthode est indépendante du moteur de calcul formel utilisé pour l'expression symbolique des composantes tensorielles dans une carte. Nous présenterons la mise en œuvre via deux moteurs de calcul formel différents : Pynac/Maxima (le défaut dans SageMath) et SymPy. Différents champs d'application seront discutés, notamment la relativité générale et ses extensions.[-]
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera ...[+]

53-04 ; 53Axx ; 58C25 ; 68N01 ; 68N15 ; 68U05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera également toutes les opérations sur les variétés pseudo-riemanniennes (variétés dotées d'un tenseur métrique) : connexion de Levi-Civita, courbure, géodésiques, isomorphismes musicaux et dualité de Hodge.Dans ce cours, nous introduirons tout d'abord la problématique du calcul tensoriel formel, en distinguant le calcul dit “abstrait” du calcul explicite. C'est ce dernier qui nous intéresse ici. Il se ramène in fine au calcul symbolique sur les composantes des champs tensoriels dans un champ de repères, ces composantes étant exprimées en termes des coordonnées d'une carte donnée.
Nous discuterons alors d'une méthode de calcul tensoriel générale, valable sur l'intégralité d'une variété donnée, sans que l'utilisateur ait à préciser dans quels champs de repères et avec quelles cartes doit s'effectuer le calcul. Cela suppose que la variété soit couverte par un atlas minimal, défini carte par carte par l'utilisateur, et soit décomposée en parties parallélisables, i.e. en ouverts couverts par un champ de repères. Ces contraintes étant satisfaites, un nombre arbitraire de cartes et de champs de repères peuvent être introduits, pourvu qu'ils soient accompagnés des fonctions de transition correspondantes.
Nous décrirons l'implémentation concrète de cette méthode dans SageMath ; elle utilise fortement la structure de dictionnaire du langage Python, ainsi que le schéma parent/élément de SageMath et le modèle de coercition associé. La méthode est indépendante du moteur de calcul formel utilisé pour l'expression symbolique des composantes tensorielles dans une carte. Nous présenterons la mise en œuvre via deux moteurs de calcul formel différents : Pynac/Maxima (le défaut dans SageMath) et SymPy. Différents champs d'application seront discutés, notamment la relativité générale et ses extensions.[-]
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera ...[+]

53-04 ; 53Axx ; 58C25 ; 68N01 ; 68N15 ; 68U05

Bookmarks Report an error