En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 16T05 9 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On analytic exponential functors on free groups - Vespa, Christine (Author of the conference) | CIRM H

Multi angle

Functors on the category gr of finitely generated free groups and group homomorphisms appear naturally in different contexts of topology. For example, Hochschild-Pirashvili homology for a wedge of circles or Jacobi diagrams in handlebodies give rise to interesting functors on gr. Some of these natural examples satisfy further properties: they are analytic and/or exponential. Pirashvili proves that the category of exponential contravariant functors from gr to the category k-Mod of k-modules is equivalent to the category of cocommutative Hopf algebras over k. Powell proves an equivalence between the category of analytic contravariant functors from gr to k-Mod, and the category of linear functors on the linear PROP associated to the Lie operad when k is a field of characteristic 0. In this talk, after explaining these two equivalences of categories, I will explain how they interact with each other. (This is a joint work with Minkyu Kim).[-]
Functors on the category gr of finitely generated free groups and group homomorphisms appear naturally in different contexts of topology. For example, Hochschild-Pirashvili homology for a wedge of circles or Jacobi diagrams in handlebodies give rise to interesting functors on gr. Some of these natural examples satisfy further properties: they are analytic and/or exponential. Pirashvili proves that the category of exponential contravariant ...[+]

18A25 ; 16T05 ; 18M70

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The Weil algebra of a Hopf algebra - Dubois-Violette, Michel (Author of the conference) | CIRM

Post-edited

We give a summary of a joint work with Giovanni Landi (Trieste University) on a non commutative generalization of Henri Cartan's theory of operations, algebraic connections and Weil algebra.

81R10 ; 81R60 ; 16T05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $_H^H\mathcal{Y}\mathcal{D}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $BM(k, H, R)$ established by Zhang. To this end, we have to develop the braided bi-Galois theory initiated by Schauenburg, which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category.[-]
Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $_H^H\mathcal{Y}\mathcal{D}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf ...[+]

16T05 ; 16K50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Hopf algebra of Lie group integrators has been introduced by H. Munthe-Kaas and W. Wright as a tool to handle Runge-Kutta numerical methods on homogeneous spaces. It is spanned by planar rooted forests, possibly decorated. We will describe a canonical surjective Hopf algebra morphism onto the shuffle Hopf algebra which deserves to be called planar arborification. The space of primitive elements is a free post-Lie algebra, which in turn will permit us to describe the corresponding co-arborification process.
Joint work with Charles Curry (NTNU Trondheim), Kurusch Ebrahimi-Fard (NTNU) and Hans Z. Munthe-Kaas (Univ. Bergen).
The two triangles appearing at 24'04" and 25'19'' respectively should be understood as a #.[-]
The Hopf algebra of Lie group integrators has been introduced by H. Munthe-Kaas and W. Wright as a tool to handle Runge-Kutta numerical methods on homogeneous spaces. It is spanned by planar rooted forests, possibly decorated. We will describe a canonical surjective Hopf algebra morphism onto the shuffle Hopf algebra which deserves to be called planar arborification. The space of primitive elements is a free post-Lie algebra, which in turn will ...[+]

81T15 ; 16T05 ; 17D25 ; 65L06 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Poisson-Lie groups and Lie bialgebras - Lecture 3 - Etingof, Pavel (Author of the conference) | CIRM H

Virtualconference

I will give an introduction to Poisson-Lie groups, Lie bialgebras and their quantization.

16T05 ; 17B62 ; 20G42

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Nakayama automorphism of an Artin-Schelter regular algebra $A$ controls the class of quantum groups that act on the algebra $A$. Several applications are given.

16T05 ; 81R50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The structure group revisited - Otto, Felix (Author of the conference) | CIRM H

Virtualconference

Following the treatment of a class of quasi-linear SPDE with Sauer, Smith, and Weber, we approach Hairer's regularity structure $(\mathrm{A},\ \mathrm{T},\ \mathrm{G})$ from a different angle. In this approach, the model space $\mathrm{T}$ is a direct sum over an index set that corresponds to specific linear combination of (decorated) trees, and thus amounts to a more parsimonious parameterization of the solution manifold. Moreover, the same structure group $\mathrm{G}$ captures different classes of equations; depending on the class, different (sub)spaces $\mathrm{T}$ matter, which correspond to linear combinations of different types of trees.

In our approach to $\mathrm{G}$, we start from the space of tuples $(a,p)$ of (polynomial) nonlinearities $a$ and space-time polynomials $p$, which we think of parameterizing the entire manifold of solutions $u$ (satisfying the equation up to space-time polynomials) via re-centering. We consider the actions of a shift by a space-time vector $h\in \mathbb{R}^{d+1}$ and of tilt by space-time polynomial $q$ on $(a,p)$-space, where, crucially, the tilt by a constant is treated as a shift of the (one-dimensional) $u$-space. We consider the infinitesimal generators of these actions, and pull them back as derivations on the algebra of formal power series $\mathbb{R}[[\mathrm{z}_{k},\ \mathrm{z}_{\mathrm{n}}]]$ in the natural coordinates $\{\mathrm{z}_{k}\}_{k\in \mathbb{N}_{0}}$ and $\{\mathrm{z}_{\mathrm{n}}\}_{\mathrm{n}\in \mathbb{N}_{0}^{d+1}-\{\mathrm{O}\}}$ of $(a,\ p)$-space. This defines a Lie algebra $\mathrm{L}\subset \mathrm{D}\mathrm{e}\mathrm{r}(\mathbb{R}[[\mathrm{z}_{k},\ \mathrm{z}_{\mathrm{n}}]])$ . Loosely speaking, the corresponding Lie group coincides with $\mathrm{G}^{*}$, but we follow an algebraic path to construct G.

As a group, $\mathrm{G}\subset(\mathrm{T}^{+})^{*}$ arises in the standard way from the Hopf algebra $\mathrm{T}^{+}$ that is obtained from dualizing the universal enveloping algebra $\mathrm{U}(\mathrm{L})$ . Here, gradedness and finiteness properties are needed for the well-posedness of the co-product $\triangle^{+}:\mathrm{T}^{+}\rightarrow \mathrm{T}^{+}\otimes \mathrm{T}^{+}$ and the antipode. The passage from $\mathbb{R}[[\mathrm{z}_{k},\ \mathrm{z}_{\mathrm{n}}]]$ to a smaller (linear) subspace $\mathrm{T}^{*}$ is needed for dualizing the module defined through $\mathrm{L}\subset$ End(T$*$) to obtain the co-module $\triangle:\mathrm{T}\rightarrow \mathrm{T}^{+}\otimes \mathrm{T}$. This yields the representation $\mathrm{G}\subset$ End(T). Both $\triangle$ and $\triangle^{+}$ satisfy the postulates of regularity structures, in particular the properties that intertwine $\triangle, \triangle^{+}$, and the family of re-centering maps $\mathcal{J}_{\mathrm{n}}:\mathrm{T}\rightarrow \mathrm{T}^{+}$. The latter relies on choosing a natural basis of $\mathrm{U}(\mathrm{L})$ , different from the standard Poincar\'{e}-Birkhoff-Witt basis, for dualization.

This is joint work with P. Linares and M. Tempelmayr.[-]
Following the treatment of a class of quasi-linear SPDE with Sauer, Smith, and Weber, we approach Hairer's regularity structure $(\mathrm{A},\ \mathrm{T},\ \mathrm{G})$ from a different angle. In this approach, the model space $\mathrm{T}$ is a direct sum over an index set that corresponds to specific linear combination of (decorated) trees, and thus amounts to a more parsimonious parameterization of the solution manifold. Moreover, the same ...[+]

60H17 ; 35k59 ; 16T05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Poisson-Lie groups and Lie bialgebras - Lecture 1 - Etingof, Pavel (Author of the conference) | CIRM H

Virtualconference

I will give an introduction to Poisson-Lie groups, Lie bialgebras and their quantization.

16T05 ; 17B62 ; 20G42

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Poisson-Lie groups and Lie bialgebras - Lecture 2 - Etingof, Pavel (Author of the conference) | CIRM H

Virtualconference

I will give an introduction to Poisson-Lie groups, Lie bialgebras and their quantization.

16T05 ; 17B62 ; 20G42

Bookmarks Report an error