En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81Q12 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Magic angles are a topic of current interest in condensed matter physics and refer to a remarkable theoretical (Bistritzer–MacDonald, 2011) and experimental (Jarillo-Herrero et al, 2018) discovery: two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties, such as superconductivity. In this talk, we shall discuss a simple periodic Hamiltonian describing the chiral limit of twisted bilayer graphene (Tarnopolsky-Kruchkov-Vishwanath, 2019), whose spectral properties are thought to determine which angles are magical. We show that the corresponding eigenfunctions decay exponentially in suitable geometrically determined regions as the angle of twisting decreases, which can be viewed as a form of semiclassical analytic hypoellipticity. This is joint work with Maciej Zworski.[-]
Magic angles are a topic of current interest in condensed matter physics and refer to a remarkable theoretical (Bistritzer–MacDonald, 2011) and experimental (Jarillo-Herrero et al, 2018) discovery: two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties, such as superconductivity. In this talk, we shall discuss a simple periodic Hamiltonian describing the chiral limit of twisted bilayer graphene (...[+]

81Q12 ; 81Q20 ; 47B28 ; 35A27

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, we apply our techniques to the more general Robin boundary condition and to a transmission problem which is of significant interest in physical applications.[-]
We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, ...[+]

35J10 ; 35P10 ; 35P15 ; 47A10 ; 81Q12 ; 82D55

Bookmarks Report an error