En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14K22 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The main result of the talk by X. Guitart in this conference classifies the 92 geometric endomorphism algebras that arise among geometrically split abelian surfaces defined over $\mathbb{Q}$. In this talk, we will explain how only 54 of them arise as geometric endomorphism algebras of Jacobians of genus 2 curves defined over $\mathbb{Q}$, and how the remaining 38 do not. In particular, we exhibit 38 abelian surfaces defined over $\mathbb{Q}$ that are not isogenous over an algebraic closure of $\mathbb{Q}$ to any Jacobian of a genus 2 curve defined over $\mathbb{Q}$.

This is a joint work with X. Guitart and E. Florit, that builds on examples supplied by N. Elkies and C. Ritzenthaler, and uses F. Narbonne's thesis in an essential way.[-]
The main result of the talk by X. Guitart in this conference classifies the 92 geometric endomorphism algebras that arise among geometrically split abelian surfaces defined over $\mathbb{Q}$. In this talk, we will explain how only 54 of them arise as geometric endomorphism algebras of Jacobians of genus 2 curves defined over $\mathbb{Q}$, and how the remaining 38 do not. In particular, we exhibit 38 abelian surfaces defined over $\mathbb{Q}$ ...[+]

14H40 ; 11G10 ; 14K15 ; 14K22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An abelian surface defined over $\mathbb{Q}$ is said to be geometrically split if its base change to the complex numbers is isogenous to a product of elliptic curves. In this talk we will determine the algebras that arise as geometric endomorphism algebras of geometrically split abelian surfaces defined over $\mathbb{Q}$. In particular, we will show that there are 92 of them. A key step is determining the set of imaginary quadratic fields $M$ for which there exists an abelian surface over $\mathbb{Q}$ which is geometrically isogenous to the square of an elliptic curve with CM by $M$.

This is joint work with Francesc Fité.[-]
An abelian surface defined over $\mathbb{Q}$ is said to be geometrically split if its base change to the complex numbers is isogenous to a product of elliptic curves. In this talk we will determine the algebras that arise as geometric endomorphism algebras of geometrically split abelian surfaces defined over $\mathbb{Q}$. In particular, we will show that there are 92 of them. A key step is determining the set of imaginary quadratic fields $M$ ...[+]

11G10 ; 14K15 ; 14K22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Frobenius distributions - Lecture 1 - Kedlaya, Kiran (Auteur de la conférence) | CIRM H

Multi angle

We give an introduction to Frobenius distributions and their relationship with Sato-Tate groups, starting with Artin motives (zero-dimensional algebraic varieties over number fields) and then considering elliptic curves and other abelian varieties.

11M50 ; 11G10 ; 11G40 ; 14H37 ; 14K22 ; 22E47

Sélection Signaler une erreur