En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 94B05 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Divisible codes - Kurz, Sascha (Auteur de la conférence) | CIRM H

Multi angle

A linear code over Fq with the Hamming metric is called ∆-divisible if the weights of all codewords are divisible by ∆. They have been introduced by Harold Ward a few decades ago. Applications include subspace codes, partial spreads, vector space partitions, and distance optimal codes. The determination of the possible lengths of projective divisible codes is an interesting and comprehensive challenge.

94B05 ; 51E23 ; 05B25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In general the computation of the weight enumerator of a code is hard and even harder so for the coset leader weight enumerator. Generalized Reed Solomon codes are MDS, so their weight enumerators are known and its formulas depend only on the length and the dimension of the code. The coset leader weight enumerator of an MDS code depends on the geometry of the associated projective system of points. We consider the coset leader weight enumerator of $F_{q}$-ary Generalized Reed Solomon codes of length q + 1 of small dimensions, so its associated projective system is a normal rational curve. For instance in case of the $\left [ q+1,3,q-1 \right ]_{q}$ code where the associated projective system of points consists of the q + 1 points of a plane conic, the answer depends whether the characteristic is odd or even. If the associated projective system of points of a $\left [ q+1,4,q-2 \right ]_{q}$ code consists of the q + 1 points of a twisted cubic, the answer depends on the value of the characteristic modulo 6.[-]
In general the computation of the weight enumerator of a code is hard and even harder so for the coset leader weight enumerator. Generalized Reed Solomon codes are MDS, so their weight enumerators are known and its formulas depend only on the length and the dimension of the code. The coset leader weight enumerator of an MDS code depends on the geometry of the associated projective system of points. We consider the coset leader weight enumerator ...[+]

94B05 ; 94B27 ; 14H50 ; 05B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An overview of algebraic geometry codes from surfaces - Nardi, Jade (Auteur de la conférence) | CIRM H

Multi angle

In the field of coding theory, Goppa's construction of error-correcting codes on algebraic curves has been widely studied and applied. As noticed by M. Tsfasman and S. Vlădut¸, this construction can be generalized to any algebraic variety. This talk aims to shed light on the case of surfaces and expand the understanding of Goppa's construction beyond curves. After discussing the motivations for considering codes from higher–dimensional varieties, we will compare and contrast codes from curves and codes from surfaces, notably regarding the computation of their parameters, their local properties, and asymptotic constructions.[-]
In the field of coding theory, Goppa's construction of error-correcting codes on algebraic curves has been widely studied and applied. As noticed by M. Tsfasman and S. Vlădut¸, this construction can be generalized to any algebraic variety. This talk aims to shed light on the case of surfaces and expand the understanding of Goppa's construction beyond curves. After discussing the motivations for considering codes from higher–dimensional ...[+]

11T71 ; 14G50 ; 94B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Projective Reed Muller codes revisited - Ghorpade, Sudhir (Auteur de la conférence) | CIRM H

Multi angle

Projective Reed Muller Codes constitute an interesting class of linear codes, which was introduced by Gilles Lachaud in 1988. Questions about their minimum distance are intimately related to the question about the maximum possible number of F-rational points in the m-dimensional projective space on a hypersurface of degree d in m+1 variables with coefficients in a finite field F. Michael Tsfasman gave a conjectural formula for this maximum possible number of points on such hypersurfaces, and the conjecture was soon proved in the affirmative by Jean-Pierre Serre. In all these works, it is generally assumed that the degree d is at most q, where q is the number of elements in F. Anders Sørensen considered in 1991 more general projective Reed Muller codes where d can be larger than q. From a coding theoretical perspective, it is more natural to consider this larger class. Sørensen proposed a formula for the minimum distance in the general case, and also studied the duals of the projective Reed-Muller codes.
We shall revisit the work of Sorensen by pointing out some minor inaccuracies in his proof of the minimum distance. We then propose an alternative proof. Further, we address the question of obtaining a characterization of the minimum weight codewords of projective Reed Muller codes.
This is a joint work with Rati Ludhani. [-]
Projective Reed Muller Codes constitute an interesting class of linear codes, which was introduced by Gilles Lachaud in 1988. Questions about their minimum distance are intimately related to the question about the maximum possible number of F-rational points in the m-dimensional projective space on a hypersurface of degree d in m+1 variables with coefficients in a finite field F. Michael Tsfasman gave a conjectural formula for this maximum ...[+]

94B05 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantum error correction and fault tolerance - Leverrier, Anthony (Auteur de la conférence) | CIRM H

Virtualconference

In this course, I will introduce quantum error correcting codes and the main ideas behind fault-tolerant quantum computing, in order to explain how it is possible to perform polynomial time quantum computations with a noisy quantum computer. I will detail concatenated code techniques, as well as stabilizer codes.

94B05 ; 81P68 ; 94B99

Sélection Signaler une erreur