En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11B13 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Incidences in Cartesian products - Solymosi, Jozsef (Auteur de la Conférence) | CIRM H

Multi angle

Various problems in additive combinatorics can be translated to a question about incidences in Cartesian products. A well known example is Elekes' treatment of the sum-product problem but there are many more applications of incidence bounds to arithmetic problems. I will review the classical applications and show some recent results.

11B75 ; 11B13 ; 52C10 ; 05Dxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On sum sets of sets having small product set - Konyagin, Sergei V. (Auteur de la Conférence) | CIRM H

Multi angle

We improve a result of Solymosi on sum-products in $\mathbb{R}$, namely, we prove that max $(|A+A|,|AA|\gg |A|^{4/3+c}$, where $c>0$ is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets $A\subset \mathbb{R}$ with $|AA| \le |A|^{4/3}$. Joint work with I. D. Schkredov.

11B13 ; 11B30 ; 11B75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Small sumsets in continuous and discrete settings - de Roton, Anne (Auteur de la Conférence) | CIRM H

Multi angle

Given a subset A of an additive group, how small can the sumset $A+A = \lbrace a+a' : a, a' \epsilon$ $A \rbrace$ be ? And what can be said about the structure of $A$ when $A + A$ is very close to the smallest possible size ? The aim of this talk is to partially answer these two questions when A is either a subset of $\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{R}$ or $\mathbb{T}$ and to explain how in this problem discrete and continuous setting are linked. This should also illustrate two important principles in additive combinatorics : reduction and rectification.
This talk is partially based on some joint work with Pablo Candela and some other work with Paul Péringuey.[-]
Given a subset A of an additive group, how small can the sumset $A+A = \lbrace a+a' : a, a' \epsilon$ $A \rbrace$ be ? And what can be said about the structure of $A$ when $A + A$ is very close to the smallest possible size ? The aim of this talk is to partially answer these two questions when A is either a subset of $\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{R}$ or $\mathbb{T}$ and to explain how in this problem discrete and continuous ...[+]

11B13 ; 11B83 ; 11B75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Structure theory of set addition, a review - Freiman, Gregory A. (Auteur de la Conférence) | CIRM H

Multi angle

This will be a review of structural theory of set addition including recent developments on the polynomial Freiman-Ruzsa conjecture.

11P70 ; 11B13

Sélection Signaler une erreur