En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14J15 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that the ring of Siegel-Jacobi forms of bounded ratio between weight and index is not finitely generated. Our main tool is the theory of toroidal b-divisors and their relation to convex geometry. As a byproduct of our methods, we prove a conjecture of Kramer about the representation of all Siegel-Jacobi forms as sections of certain line bundles and we recover a formula due to Tai for the asymptotic dimension of the space of Siegel-Jacobi forms of given ratio between weight and index. This is joint work with José Burgos Gil, David Holmes and Robin de Jong.[-]
We show that the ring of Siegel-Jacobi forms of bounded ratio between weight and index is not finitely generated. Our main tool is the theory of toroidal b-divisors and their relation to convex geometry. As a byproduct of our methods, we prove a conjecture of Kramer about the representation of all Siegel-Jacobi forms as sections of certain line bundles and we recover a formula due to Tai for the asymptotic dimension of the space of Siegel-Jacobi ...[+]

14C20 ; 11F50 ; 32U05 ; 14J15

Sélection Signaler une erreur