Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles are blocked in their movement by all other particles, while the first class particles are only blocked by other first class particles. We consider the step initial conditions so that all non-negative integer positions are occupied and all other positions are vacant at time zero. Moreover, we take exactly L second class particles to be located at the very front of the configuration at time zero. Then, using recent results of Tracy-Widom (2017) and Borodin-Wheeler (2018), we compute the asymptotic speed of the leftmost second class particle.
This is joint work with Promit Ghosal (Columbia University) and Ethan Zell (University of Virginia) in arXiv:1903.09615.
[-]
In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles ...
[+]
34M50 ; 60B20 ; 34E20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'écologie est une discipline quantitative dans laquelle les mathématiques sont présentes sous différentes formes depuis très longtemps. En conséquence, l'arrivée massive d'ordinateurs de plus en plus puissants dans les laboratoires dans les dernières décennies, a conduit à une explosion de la modélisation dans ce domaine, sous forme de calculs numériques mais également par l'analyse mathématique de modèles relativement simples. Cette croissance importante de l'activité de modélisation mathématique a été accompagnée par une augmentation de la complexité des modèles d'écologie qui tentent d'intégrer la plus grosse quantité de processus connus possible. Parallèlement, les moyens d'expérimentations et d'observation du milieu naturel n'ont pas cessé de s'améliorer, produisant ainsi des bases de données de plus en plus complètes dans la description du fonctionnement des écosystèmes. Paradoxalement, la formulation de base des processus utilisée dans les modèles complexes est toujours la même et fondée sur des expérimentations réalisées dans des conditions homogènes de laboratoire au cours du XXème siècle. Nous posons la question de l'intérêt d'une description adéquate d'un écosystème pour comprendre ses réponses à différentes perturbations. Une approche consiste à utiliser des formulations mécanistes des processus, c'est à dire des formulations fondées sur des détails expliquant la cause de la réalisation des processus, plutôt que des formulations empiriques acquises dans des conditions différentes du milieu dans lequel on les applique. Cette prise en compte des mécanismes induit encore un surcroit de complexité. Les mathématiques fournissent un ensemble d'idées et de méthodes permettant tout d'abord de produire des formulations adaptées à la prise en compte des mécanismes et également d'aborder cette complexité des modèles écosystémiques, voire dans certains cas de la réduire. Nous illustrerons cette démarche à travers des exemples d'applications variés.
[-]
L'écologie est une discipline quantitative dans laquelle les mathématiques sont présentes sous différentes formes depuis très longtemps. En conséquence, l'arrivée massive d'ordinateurs de plus en plus puissants dans les laboratoires dans les dernières décennies, a conduit à une explosion de la modélisation dans ce domaine, sous forme de calculs numériques mais également par l'analyse mathématique de modèles relativement simples. Cette croissance ...
[+]
34E13 ; 34E15 ; 34E20 ; 92D25 ; 92D40