Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
As a toy model for the viscous interaction of planar vortices, we consider the solution of the two-dimensional Navier-Stokes equation with singular initial data corresponding to a pair of point vortices with opposite circulations. In the large Reynolds number regime, we construct an approximate solution which takes into account the deformation of the stream lines due to vortex interactions, as well as the corrections to the translation speed of the dipole due to finite size effects. Using energy estimates based on Arnold's variational characterization of equilibria for the Euler equation, we then show that our approximation remains valid over a very long time interval, if the viscosity is sufficiently small. This is a joint work with Michele Dolce (Lausanne), which relies on previous studies in collaboration with Vladimir Sverak (Minneapolis).
[-]
As a toy model for the viscous interaction of planar vortices, we consider the solution of the two-dimensional Navier-Stokes equation with singular initial data corresponding to a pair of point vortices with opposite circulations. In the large Reynolds number regime, we construct an approximate solution which takes into account the deformation of the stream lines due to vortex interactions, as well as the corrections to the translation speed of ...
[+]
35Q30 ; 76D05 ; 76D17 ; 35C20 ; 35B35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will describe joint work with Dietrich Häfner and Andràs Vasy in which we study the asymptotic behavior of linearized gravitational perturbations of Schwarzschild or slowly rotating Kerr black hole spacetimes. We show that solutions of the linearized Einstein equation decay at an inverse polynomial rate to a stationary solution (given by an infinitesimal variation of the mass and angular momentum of the black hole), plus a pure gauge term. Our proof uses a detailed description of the resolvent of an associated wave equation on symmetric 2-tensors near zero energy.
[-]
I will describe joint work with Dietrich Häfner and Andràs Vasy in which we study the asymptotic behavior of linearized gravitational perturbations of Schwarzschild or slowly rotating Kerr black hole spacetimes. We show that solutions of the linearized Einstein equation decay at an inverse polynomial rate to a stationary solution (given by an infinitesimal variation of the mass and angular momentum of the black hole), plus a pure gauge term. Our ...
[+]
35B35 ; 35C20 ; 83C05