I will discuss a criterion for randomness of sequences of zeros and ones which is strictly stronger than normality, butholds for almost every sequence generated by i.i.d. random variables with distribution {1/2, 1/2}. Briefly put, the idea is count the number of times blocks of length n appear in the initial block of length $2^n$. I will also discuss an extension of this idea to toral automorphisms. (joint work with Yuval Peres)
11K16 ; 37D99 ; 60F99