Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ from a single spine phase to a multi-spine phase. Correspondingly, there is a transition in the volume growth rate of balls around the root as a function of radius from linear growth for $\mu<0$ to the familiar quadratic growth at $\mu=0$ and to cubic growth for $\mu> 0$.
[-]
We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ ...
[+]
05C05 ; 60J75 ; 60B10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The human brain contains billions of neurones and glial cells that are tightly interconnected. Describing their electrical and chemical activity is mind-boggling hence the idea of studying the thermodynamic limit of the equations that describe these activities, i.e. to look at what happens when the number of cells grows arbitrarily large. It turns out that under reasonable hypotheses the number of equations to deal with drops down sharply from millions to a handful, albeit more complex. There are many different approaches to this which are usually called mean-field analyses. I present two mathematical methods to illustrate these approaches. They both enjoy the feature that they propagate chaos, a notion I connect to physiological measurements of the correlations between neuronal activities. In the first method, the limit equations can be read off the network equations and methods 'à la Sznitman' can be used to prove convergence and propagation of chaos as in the case of a network of biologically plausible neurone models. The second method requires more sophisticated tools such as large deviations to identify the limit and do the rest of the job, as in the case of networks of Hopfield neurones such as those present in the trendy deep neural networks.
[-]
The human brain contains billions of neurones and glial cells that are tightly interconnected. Describing their electrical and chemical activity is mind-boggling hence the idea of studying the thermodynamic limit of the equations that describe these activities, i.e. to look at what happens when the number of cells grows arbitrarily large. It turns out that under reasonable hypotheses the number of equations to deal with drops down sharply from ...
[+]
60F99 ; 60B10 ; 92B20 ; 82C32 ; 82C80 ; 35Q80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.
Based on joint works with F. Dalmao, D. Marinucci, I. Nourdin, M. Rossi and I. Wigman.
[-]
I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.
Based on joint works with F. Dalmao, D. ...
[+]
60G60 ; 60D05 ; 60B10 ; 58J50 ; 35P20 ; 60F05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Angel and Schramm ont étudié en 2003 la limite locale des triangulations uniformes. La loi limite, appelée UIPT (pour Uniform Infinite planar Triangulation) a depuis été pas mal étudiée et est plutôt bien comprise. Dans cet exposé, je vais expliquer comment on peut obtenir un résultat analogue à celui d'Angel et Schramm mais lorsque les triangulations ne sont plus uniformes mais distribuées selon un modèle d'Ising. Une partie importante de la preuve consiste à étudier une équation sur des séries génératrices à deux variables catalytiques et repose sur la méthode des invariants de Tutte (introduite par Tutte et popularisée par Bernardi et Bousquet-Mélou). L'objet limite est pour le moment très mal compris et soulève un grand nombre de questions ouvertes !
[-]
Angel and Schramm ont étudié en 2003 la limite locale des triangulations uniformes. La loi limite, appelée UIPT (pour Uniform Infinite planar Triangulation) a depuis été pas mal étudiée et est plutôt bien comprise. Dans cet exposé, je vais expliquer comment on peut obtenir un résultat analogue à celui d'Angel et Schramm mais lorsque les triangulations ne sont plus uniformes mais distribuées selon un modèle d'Ising. Une partie importante de la ...
[+]
05C30 ; 05C10 ; 05C81 ; 60D05 ; 60B10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a Markov process living in some space E, and killed (penalized) at a rate depending on its position. In the last decade, several conditions have been given ensuring that the law of the process conditioned on survival converges to a quasi-stationary distribution exponentially fast in total variation distance. In this talk, we will present very simple examples of penalized Markov process whose conditional law cannot converge in total variation, and we will give a sufficient condition implying contraction and convergence of the conditional law in Wasserstein distance to a unique quasi-stationary distribution. Our criterion also imply a first-order expansion of the probability of survival, the ergodicity in Wasserstein distance of the Q-process, i.e. the process conditioned to never be killed, and quasi-ergodicity in Wasserstein distance. We then apply this criterion to several examples, including Bernoulli convolutions and piecewise deterministic Markov processes of the form of switched dynamical systems, for which convergence in total variation is not possible.
This is joint work with Edouard Strickler (CNRS, Université de Lorraine) and Denis Villemonais (Université de Lorraine).
[-]
We consider a Markov process living in some space E, and killed (penalized) at a rate depending on its position. In the last decade, several conditions have been given ensuring that the law of the process conditioned on survival converges to a quasi-stationary distribution exponentially fast in total variation distance. In this talk, we will present very simple examples of penalized Markov process whose conditional law cannot converge in total ...
[+]
37A25 ; 60B10 ; 60J25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.