En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 90C99 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Optimization problem on quantum computers - lecture 1 - Hamoudi, Yassine (Auteur de la conférence) | CIRM H

Multi angle

The potential of quantum algorithms for solving optimization problems has been explored since the early days of quantum computing. This course introduces some of the key ideas and algorithms developed in this context, along with their fundamental limitations. Depending on the available time, topics covered may include: quantum optimization algorithms inspired by physics (adiabatic algorithms, variational algorithms, QAOA, quantum annealing, etc.), quantum algorithms for convex optimization (acceleration of first- and second-order methods, oracular problems, etc.), applications to combinatorial optimization (graph problems, quadratic binary optimization, etc.).[-]
The potential of quantum algorithms for solving optimization problems has been explored since the early days of quantum computing. This course introduces some of the key ideas and algorithms developed in this context, along with their fundamental limitations. Depending on the available time, topics covered may include: quantum optimization algorithms inspired by physics (adiabatic algorithms, variational algorithms, QAOA, quantum annealing, ...[+]

81P68 ; 68Q25 ; 68W40 ; 90C99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Optimization problem on quantum computers - lecture 2 - Hamoudi, Yassine (Auteur de la conférence) | CIRM H

Multi angle

The potential of quantum algorithms for solving optimization problems has been explored since the early days of quantum computing. This course introduces some of the key ideas and algorithms developed in this context, along with their fundamental limitations. Depending on the available time, topics covered may include: quantum optimization algorithms inspired by physics (adiabatic algorithms, variational algorithms, QAOA, quantum annealing, etc.), quantum algorithms for convex optimization (acceleration of first- and second-order methods, oracular problems, etc.), applications to combinatorial optimization (graph problems, quadratic binary optimization, etc.).[-]
The potential of quantum algorithms for solving optimization problems has been explored since the early days of quantum computing. This course introduces some of the key ideas and algorithms developed in this context, along with their fundamental limitations. Depending on the available time, topics covered may include: quantum optimization algorithms inspired by physics (adiabatic algorithms, variational algorithms, QAOA, quantum annealing, ...[+]

81P68 ; 68Q25 ; 68W40 ; 90C99

Sélection Signaler une erreur