En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 93E20 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the discrete investment stages. Working in a continuous-time diffusion framework, we characterize and analyze the resulting Nash equilibrium and game values. Our analysis quantifies the dynamic competition effects and yields insight into dynamic preemption and over-investment in a general asymmetric setting. A case-study considering the impact of fluctuating emission costs on power producers investing in nuclear and coal-fired plants is also presented.[-]
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the ...[+]

93E20 ; 91B38 ; 91A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The valuation of American options (a widespread type of financial contract) requires the numerical solution of an optimal stopping problem. Numerical methods for such problems have been widely investigated. Monte-Carlo methods are based on the implementation of dynamic programming principles coupled with regression techniques. In lower dimension, one can choose to tackle the related free boundary PDE with deterministic schemes.
Pricing of American options will therefore be inevitably heavier than the one of European options, which only requires the computation of a (linear) expectation. The calibration (fitting) of a stochastic model to market quotes for American options is therefore an a priori demanding task. Yet, often this cannot be avoided: on exchange markets one is typically provided only with market quotes for American options on single stocks (as opposed to large stock indexes - e.g. S&P500 - for which large amounts of liquid European options are typically available).
In this talk, we show how one can derive (approximate, but accurate enough) explicit formulas - therefore replacing other numerical methods, at least in a low-dimensional case - based on asymptotic calculus for diffusions.
More precisely: based on a suitable representation of the PDE free boundary, we derive an approximation of this boundary close to final time that refines the expansions known so far in the literature. Via the early premium formula, this allows to derive semi-closed expressions for the price of the American put/call. The final product is a calibration recipe of a Dupire's local volatility to American option data.
Based on joint work with Pierre Henry-Labordère.[-]
The valuation of American options (a widespread type of financial contract) requires the numerical solution of an optimal stopping problem. Numerical methods for such problems have been widely investigated. Monte-Carlo methods are based on the implementation of dynamic programming principles coupled with regression techniques. In lower dimension, one can choose to tackle the related free boundary PDE with deterministic schemes.
Pricing of ...[+]

93E20 ; 91G60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Graphon mean field games and the GMFG equations - Caines, Peter E. (Auteur de la Conférence) | CIRM H

Post-edited

Very large networks linking dynamical agents are now ubiquitous and there is significant interest in their analysis, design and control. The emergence of the graphon theory of large networks and their infinite limits has recently enabled the formulation of a theory of the centralized control of dynamical systems distributed on asymptotically infinite networks [Gao and Caines, IEEE CDC 2017, 2018]. Furthermore, the study of the decentralized control of such systems has been initiated in [Caines and Huang, IEEE CDC 2018] where Graphon Mean Field Games (GMFG) and the GMFG equations are formulated for the analysis of non-cooperative dynamical games on unbounded networks. In this talk the GMFG framework will be first be presented followed by the basic existence and uniqueness results for the GMFG equations, together with an epsilon-Nash theorem relating the infinite population equilibria on infinite networks to that of finite population equilibria on finite networks.[-]
Very large networks linking dynamical agents are now ubiquitous and there is significant interest in their analysis, design and control. The emergence of the graphon theory of large networks and their infinite limits has recently enabled the formulation of a theory of the centralized control of dynamical systems distributed on asymptotically infinite networks [Gao and Caines, IEEE CDC 2017, 2018]. Furthermore, the study of the decentralized ...[+]

91A13 ; 49N70 ; 93E20 ; 93E35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean Field Games - lecture 2 - Cardaliaguet, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

The lecture is a short presentation of the theory of Mean Field Games (MFG) and Mean Field Control (MFC). After explaining how to derive these models from optimal control problems and games with a large number of players, we will describe the basic results of MFG (existence, uniqueness of the solution) and MFC, writing in the later case the associated infinite dimensional Hamilton-Jacobi equation and the optimality conditions.

35Q89 ; 93E20 ; 49K20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study an optimal reinsurance problem under the criterion of maximizing the expected utility of terminal wealth when the loss process exhibits jump clustering features and the insurance company has restricted information about the claims arrival intensity. By solving the associated filtering problem we reduce the original problem to a stochastic control problem under full information. Since the classical Hamilton-Jacobi-Bellman approach does not apply, due to the infinite dimensionality of the filter, we choose an alternative approach based on Backward Stochastic Differential Equations (BSDEs). Precisely, we characterize the value process and the optimal reinsurance strategy in terms of a BSDE driven by a marked point process. The talk is based on a joint work with M. Brachetta, G. Callegaro and C. Sgarra (arXiv:2207.05489, 2022).[-]
We study an optimal reinsurance problem under the criterion of maximizing the expected utility of terminal wealth when the loss process exhibits jump clustering features and the insurance company has restricted information about the claims arrival intensity. By solving the associated filtering problem we reduce the original problem to a stochastic control problem under full information. Since the classical Hamilton-Jacobi-Bellman approach does ...[+]

60G55 ; 60J60 ; 91G05 ; 91G10 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study the superhedging prices and the associated superhedging strategies for European options in a nonlinear incomplete market model with default. The underlying market model consists of one risk-free asset and one risky asset, whose price may admit a jump at the default time. The portfolio processes follow nonlinear dynamics with a nonlinear driver $f$. By using a dynamic programming approach, we first provide a dual formulation of the seller's (superhedging) price for the European option as the supremum, over a suitable set of equivalent probability measures $Q \in \mathcal{Q}$, of the $f$ - evaluation/expectation under $Q$ of the payoff. We also establish a characterization of the seller's (superhedging) price as the initial value of the minimal supersolution of a constrained backward stochastic differential equation with default. Moreover, we provide some properties of the terminal profit made by the seller, and some results related to replication and no-arbitrage issues. Our results rely on first establishing a nonlinear optional and a nonlinear predictable decomposition for processes which are $\mathcal{E}^f$-strong supermartingales under $Q$ for all $Q \in \mathcal{Q}$. Joint work with M. Grigorova and A. Sulem.[-]
We study the superhedging prices and the associated superhedging strategies for European options in a nonlinear incomplete market model with default. The underlying market model consists of one risk-free asset and one risky asset, whose price may admit a jump at the default time. The portfolio processes follow nonlinear dynamics with a nonlinear driver $f$. By using a dynamic programming approach, we first provide a dual formulation of the ...[+]

91G20 ; 60H10 ; 60H30 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We are interested in monitoring patients in remission from cancer. Our aim is to detect their relapses as soon as possible, as well as detect the type of relapse, to decide on the appropriate treatment to be given. Available data are some marker level of the rate of cancerous cells in the blood which evolves continuously but is measured at discrete (large) intervals and through noise. The patient's state of health is modeled by a piecewise deterministic Markov process (PDMP). Several decisions must be taken from these incomplete observations: what treatment to give, and when to schedule the next medical visit. After presenting a suitable class of controlled PDMPs to model this situation, I will describe the corresponding stochastic control problem and will present the resolution strategy that we adopted. The objective is to obtain an approximation of the value function (optimal performance) as well as build an explicit policy applicable in practice and as close to optimality as possible. The results will be illustrated by simulations calibrated on a cohort of a clinical trial on multiple myeloma provided by the Center of Cancer Research in Toulouse.[-]
We are interested in monitoring patients in remission from cancer. Our aim is to detect their relapses as soon as possible, as well as detect the type of relapse, to decide on the appropriate treatment to be given. Available data are some marker level of the rate of cancerous cells in the blood which evolves continuously but is measured at discrete (large) intervals and through noise. The patient's state of health is modeled by a piecewise ...[+]

60J25 ; 93E20 ; 60J05 ; 93E11

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean field games with major and minor players - Carmona, René (Auteur de la Conférence) | CIRM H

Multi angle

We introduce a new strategy for the solution of Mean Field Games in the presence of major and minor players. This approach is based on a formulation of the fixed point step in spaces of controls. We use it to highlight the differences between open and closed loop problems. We illustrate the implementation of this approach for linear quadratic and finite state space games, and we provide numerical results motivated by applications in biology and cyber-security.[-]
We introduce a new strategy for the solution of Mean Field Games in the presence of major and minor players. This approach is based on a formulation of the fixed point step in spaces of controls. We use it to highlight the differences between open and closed loop problems. We illustrate the implementation of this approach for linear quadratic and finite state space games, and we provide numerical results motivated by applications in biology and ...[+]

93E20 ; 60H10 ; 60K35 ; 49K45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional stochastic differential equations.
This new distance $\widetilde{W}^{2}$ is defined similarly to the classical Wasserstein distance $\widetilde{W}^{2}$ but the set of couplings is restricted to the set of laws of solutions of 2$d$-dimensional stochastic differential equations. We prove that this new distance $\widetilde{W}^{2}$ metrizes the weak topology. Furthermore this distance $\widetilde{W}^{2}$ is characterized in terms of a stochastic control problem. In the case d = 1 we can construct an explicit solution. The multi-dimensional case, is more tricky and classical results do not apply to solve the HJB equation because of the degeneracy of the differential operator. Nevertheless, we prove that this HJB equation admits a regular solution.[-]
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional ...[+]

91B70 ; 60H30 ; 60H15 ; 60J60 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 1 - Possamaï, Dylan (Auteur de la Conférence) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

93E20 ; 91B41

Sélection Signaler une erreur