En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 93E20 14 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean field games with major and minor players - Carmona, René (Auteur de la Conférence) | CIRM H

Multi angle

We introduce a new strategy for the solution of Mean Field Games in the presence of major and minor players. This approach is based on a formulation of the fixed point step in spaces of controls. We use it to highlight the differences between open and closed loop problems. We illustrate the implementation of this approach for linear quadratic and finite state space games, and we provide numerical results motivated by applications in biology and cyber-security.[-]
We introduce a new strategy for the solution of Mean Field Games in the presence of major and minor players. This approach is based on a formulation of the fixed point step in spaces of controls. We use it to highlight the differences between open and closed loop problems. We illustrate the implementation of this approach for linear quadratic and finite state space games, and we provide numerical results motivated by applications in biology and ...[+]

93E20 ; 60H10 ; 60K35 ; 49K45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional stochastic differential equations.
This new distance $\widetilde{W}^{2}$ is defined similarly to the classical Wasserstein distance $\widetilde{W}^{2}$ but the set of couplings is restricted to the set of laws of solutions of 2$d$-dimensional stochastic differential equations. We prove that this new distance $\widetilde{W}^{2}$ metrizes the weak topology. Furthermore this distance $\widetilde{W}^{2}$ is characterized in terms of a stochastic control problem. In the case d = 1 we can construct an explicit solution. The multi-dimensional case, is more tricky and classical results do not apply to solve the HJB equation because of the degeneracy of the differential operator. Nevertheless, we prove that this HJB equation admits a regular solution.[-]
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional ...[+]

91B70 ; 60H30 ; 60H15 ; 60J60 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Graphon mean field games and the GMFG equations - Caines, Peter E. (Auteur de la Conférence) | CIRM H

Post-edited

Very large networks linking dynamical agents are now ubiquitous and there is significant interest in their analysis, design and control. The emergence of the graphon theory of large networks and their infinite limits has recently enabled the formulation of a theory of the centralized control of dynamical systems distributed on asymptotically infinite networks [Gao and Caines, IEEE CDC 2017, 2018]. Furthermore, the study of the decentralized control of such systems has been initiated in [Caines and Huang, IEEE CDC 2018] where Graphon Mean Field Games (GMFG) and the GMFG equations are formulated for the analysis of non-cooperative dynamical games on unbounded networks. In this talk the GMFG framework will be first be presented followed by the basic existence and uniqueness results for the GMFG equations, together with an epsilon-Nash theorem relating the infinite population equilibria on infinite networks to that of finite population equilibria on finite networks.[-]
Very large networks linking dynamical agents are now ubiquitous and there is significant interest in their analysis, design and control. The emergence of the graphon theory of large networks and their infinite limits has recently enabled the formulation of a theory of the centralized control of dynamical systems distributed on asymptotically infinite networks [Gao and Caines, IEEE CDC 2017, 2018]. Furthermore, the study of the decentralized ...[+]

91A13 ; 49N70 ; 93E20 ; 93E35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 1 - Possamaï, Dylan (Auteur de la Conférence) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

93E20 ; 91B41

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean Field Games - lecture 2 - Cardaliaguet, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

The lecture is a short presentation of the theory of Mean Field Games (MFG) and Mean Field Control (MFC). After explaining how to derive these models from optimal control problems and games with a large number of players, we will describe the basic results of MFG (existence, uniqueness of the solution) and MFC, writing in the later case the associated infinite dimensional Hamilton-Jacobi equation and the optimality conditions.

35Q89 ; 93E20 ; 49K20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 2 - Possamaï, Dylan (Auteur de la Conférence) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

91B41 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean Field Games - lecture 3 - Cardaliaguet, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

The lecture is a short presentation of the theory of Mean Field Games (MFG) and Mean Field Control (MFC). After explaining how to derive these models from optimal control problems and games with a large number of players, we will describe the basic results of MFG (existence, uniqueness of the solution) and MFC, writing in the later case the associated infinite dimensional Hamilton-Jacobi equation and the optimality conditions.

35Q89 ; 93E20 ; 49K20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 3 - Possamaï, Dylan (Auteur de la Conférence) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

91B41 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal-agent problems with volatility control - Hubert, Emma (Auteur de la Conférence) | CIRM H

Multi angle

The seminal work of Cvitanic, Possamai and Touzi (2018) [1] introduced a general framework for continuous-time principal-agent problems using dynamic programming and second-order backward stochastic differential equations (2BSDEs). In this talk, we first propose an alternative formulation of the principal-agent problem that allows for a more direct resolution using standard BSDEs alone. Our approach is motivated by a key observation in [1]: when the principal observes the output process X continuously, she can compute its quadratic variation pathwise. While this information is incorporated into the contract in [1], we consider here a reformulation where the principal directly controls this process in a ‘first-best' setting. The resolution of this alternative problem follows the methodology known as Sannikov's trick [2] in continuous-time principal-agent problems. We then demonstrate that the solution to this ‘first-best' formulation coincides with the original problem's solution. More specifically, leveraging the contract form introduced in [1], we establish that the ‘first-best' outcome can be attained even when the principal lacks direct control over the quadratic variation. Crucially, our approach does not require the use of 2BSDEs to prove contract optimality, as optimality naturally follows from achieving the ‘first-best' scenario. We believe that this reformulation offers a more accessible approach to solving continuous-time principal-agent problems with volatility control, facilitating broader dissemination across various fields. In the second part of the talk, we will explore how this methodology extends to more complex settings, particularly multi-agent frameworks. Research partially supported by the NSF grant DMS-2307736.[-]
The seminal work of Cvitanic, Possamai and Touzi (2018) [1] introduced a general framework for continuous-time principal-agent problems using dynamic programming and second-order backward stochastic differential equations (2BSDEs). In this talk, we first propose an alternative formulation of the principal-agent problem that allows for a more direct resolution using standard BSDEs alone. Our approach is motivated by a key observation in [1]: when ...[+]

91B43 ; 91b41 ; 93E20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the discrete investment stages. Working in a continuous-time diffusion framework, we characterize and analyze the resulting Nash equilibrium and game values. Our analysis quantifies the dynamic competition effects and yields insight into dynamic preemption and over-investment in a general asymmetric setting. A case-study considering the impact of fluctuating emission costs on power producers investing in nuclear and coal-fired plants is also presented.[-]
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the ...[+]

93E20 ; 91B38 ; 91A80

Sélection Signaler une erreur