Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We construct a transcendental entire function for which infinitely many Fatou components share the same boundary. This solves the long-standing open problem whether Lakes of Wada continua can arise in complex dynamics, and answers the analogue of a question of Fatou from 1920 concerning Fatou components of rational functions. Our theorem also provides the first example of an entire function having a simply connected Fatou component whose closure has a disconnected complement, answering a recent question of Boc Thaler. Using the same techniques, we give new counterexamples to a conjecture of Eremenko concerning curves in the escaping set of an entire function. This is joint work with Lasse Rempe and James Waterman.
[-]
We construct a transcendental entire function for which infinitely many Fatou components share the same boundary. This solves the long-standing open problem whether Lakes of Wada continua can arise in complex dynamics, and answers the analogue of a question of Fatou from 1920 concerning Fatou components of rational functions. Our theorem also provides the first example of an entire function having a simply connected Fatou component whose closure ...
[+]
37F10 ; 30D05 ; 37B45 ; 54F15