En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Allaire, Grégoire 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Tensor methods have emerged as an indispensable tool for the numerical solution of high-dimensional problems in computational science, and in particular problems arising in stochastic and parametric analyses. In many practical situations, the approximation of functions of multiple parameters (or random variables) is made computationally tractable by using low-rank tensor formats. Here, we present some results on rank-structured approximations and we discuss the connection between best approximation problems in tree-based low-rank formats and the problem of finding optimal low-dimensional subspaces for the projection of a tensor. Then, we present constructive algorithms that adopt a subspace point of view for the computation of sub-optimal low-rank approximations with respect to a given norm. These algorithms are based on the construction of sequences of suboptimal but nested subspaces.

Keywords: high dimensional problems - tensor numerical methods - projection-based model order reduction - low-rank tensor formats - greedy algorithms - proper generalized decomposition - uncertainty quantification - parametric equations[-]
Tensor methods have emerged as an indispensable tool for the numerical solution of high-dimensional problems in computational science, and in particular problems arising in stochastic and parametric analyses. In many practical situations, the approximation of functions of multiple parameters (or random variables) is made computationally tractable by using low-rank tensor formats. Here, we present some results on rank-structured approximations ...[+]

65D15 ; 35J50 ; 41A63 ; 65N12 ; 15A69 ; 46B28 ; 46A32 ; 41A46 ; 41A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on the fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

Keywords: generalized multiscale finite element method - nonlinear PDEs - heterogeneous porous media - discrete empirical interpolation - proper orthogonal decomposition[-]
We combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply ...[+]

35-XX ; 65-XX ; 86-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

An introduction to molecular dynamics - Stoltz, Gabriel (Auteur de la Conférence) | CIRM H

Post-edited

The aim of this two-hour lecture is to present the mathematical underpinnings of some common numerical approaches to compute average properties as predicted by statistical physics. The first part provides an overview of the most important concepts of statistical physics (in particular thermodynamic ensembles). The aim of the second part is to provide an introduction to the practical computation of averages with respect to the Boltzmann-Gibbs measure using appropriate stochastic dynamics of Langevin type. Rigorous ergodicity results as well as elements on the estimation of numerical errors are provided. The last part is devoted to the computation of transport coefficients such as the mobility or autodiffusion in fluids, relying either on integrated equilibrium correlations à la Green-Kubo, or on the linear response of nonequilibrium dynamics in their steady-states.[-]
The aim of this two-hour lecture is to present the mathematical underpinnings of some common numerical approaches to compute average properties as predicted by statistical physics. The first part provides an overview of the most important concepts of statistical physics (in particular thermodynamic ensembles). The aim of the second part is to provide an introduction to the practical computation of averages with respect to the Boltzmann-Gibbs ...[+]

82B31 ; 82B80 ; 65C30 ; 82C31 ; 82C70 ; 60H10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The flexibility of the Bayesian approach to uncertainty, and its notable practical successes, have made it an increasingly popular tool for uncertainty quantification. The scope of application has widened from the finite sample spaces considered by Bayes and Laplace to very high-dimensional systems, or even infinite-dimensional ones such as PDEs. It is natural to ask about the accuracy of Bayesian procedures from several perspectives: e.g., the frequentist questions of well-specification and consistency, or the numerical analysis questions of stability and well-posedness with respect to perturbations of the prior, the likelihood, or the data. This talk will outline positive and negative results (both classical ones from the literature and new ones due to the authors) on the accuracy of Bayesian inference. There will be a particular emphasis on the consequences for high- and infinite-dimensional complex systems. In particular, for such systems, subtle details of geometry and topology play a critical role in determining the accuracy or instability of Bayesian procedures. Joint with with Houman Owhadi and Clint Scovel (Caltech).[-]
The flexibility of the Bayesian approach to uncertainty, and its notable practical successes, have made it an increasingly popular tool for uncertainty quantification. The scope of application has widened from the finite sample spaces considered by Bayes and Laplace to very high-dimensional systems, or even infinite-dimensional ones such as PDEs. It is natural to ask about the accuracy of Bayesian procedures from several perspectives: e.g., the ...[+]

62F15 ; 62G35

Sélection Signaler une erreur