En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Critères de recherche : "2015" 244 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Commutative algebra for Artin approximation - Part 1 - Hauser, Herwig (Auteur de la Conférence) | CIRM H

Post-edited

In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach spaces), and give a conceptual proof of the Weierstrass division theorem.
Lecture two covers smooth, unramified and étale morphisms between noetherian rings. The relation of these notions with the concepts of submersion, immersion and diffeomorphism from differential geometry is given.
In the third lecture, we investigate ring extensions between the three power series rings and describe the respective flatness properties. This allows us to prove approximation in the linear case.
The last lecture is devoted to the geometry of solution sets in power series spaces. We construct in the case of one $x$-variable an isomorphism of an $m$-adic neighborhood of a solution with the cartesian product of a (singular) scheme of finite type with an (infinite dimensional) smooth space, thus extending the factorization theorem of Grinberg-Kazhdan-Drinfeld.
CIRM - Chaire Jean-Morlet 2015 - Aix-Marseille Université[-]
In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach ...[+]

13J05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Commutative algebra for Artin approximation - Part 2 - Hauser, Herwig (Auteur de la Conférence) | CIRM H

Multi angle

In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach spaces), and give a conceptual proof of the Weierstrass division theorem.
Lecture two covers smooth, unramified and étale morphisms between noetherian rings. The relation of these notions with the concepts of submersion, immersion and diffeomorphism from differential geometry is given.
In the third lecture, we investigate ring extensions between the three power series rings and describe the respective flatness properties. This allows us to prove approximation in the linear case.
The last lecture is devoted to the geometry of solution sets in power series spaces. We construct in the case of one $x$-variable an isomorphism of an $m$-adic neighborhood of a solution with the cartesian product of a (singular) scheme of finite type with an (infinite dimensional) smooth space, thus extending the factorization theorem of Grinberg-Kazhdan-Drinfeld.
CIRM - Chaire Jean-Morlet 2015 - Aix-Marseille Université[-]
In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach ...[+]

14B25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Commutative algebra for Artin approximation - Part 3 - Hauser, Herwig (Auteur de la Conférence) | CIRM H

Multi angle

In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach spaces), and give a conceptual proof of the Weierstrass division theorem.
Lecture two covers smooth, unramified and étale morphisms between noetherian rings. The relation of these notions with the concepts of submersion, immersion and diffeomorphism from differential geometry is given.
In the third lecture, we investigate ring extensions between the three power series rings and describe the respective flatness properties. This allows us to prove approximation in the linear case.
The last lecture is devoted to the geometry of solution sets in power series spaces. We construct in the case of one $x$-variable an isomorphism of an $m$-adic neighborhood of a solution with the cartesian product of a (singular) scheme of finite type with an (infinite dimensional) smooth space, thus extending the factorization theorem of Grinberg-Kazhdan-Drinfeld.
CIRM - Chaire Jean-Morlet 2015 - Aix-Marseille Université[-]
In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach ...[+]

13J05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank $1$, for example, when $X$ is the real hyperbolic space, $\Gamma$ is geometrically finite and $\Gamma$ $\backslash$ $X$ has infinite volume.
When $\Gamma$ is a nonuniform lattice in case $(1)$ or any group in case $(2)$, compactification of $\Gamma$ $\backslash$ $X$ and its boundary play an important role in the geometric scattering theory of $\Gamma$ $\backslash$ $X$. When $X$ is of rank at least $2$, quotients of $X$ of finite volume have also been extensively studied. There has been a lot of recent interest and work to understand quotients $\Gamma$ $\backslash$ $X$ of infinite volume. For example, there are some generalizations of convex cocompact groups, but no generalizations yet of geometrically finite groups. They are related to the notion of thin groups. One naturally expects that these locally symmetric spaces should have real analytic compactifications with corners (with codimension equal to the rank), and their boundary should also be used to parametrize the continuous spectrum and to understand the geometrically scattering theory. These compactifications also provide a natural class of manifolds with corners. In this talk, I will describe some questions, open problems and results.[-]
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank ...[+]

53C35 ; 58J50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The algebra and model theory of transseries - Aschenbrenner, Matthias (Auteur de la Conférence) | CIRM H

Multi angle

The concept of a "transseries" is a natural extension of that of a Laurent series, allowing for exponential and logarithmic terms. Transseries were introduced in the 1980s by the analyst Écalle and also, independently, by the logicians Dahn and Göring. The germs of many naturally occurring real-valued functions of one variable have asymptotic expansions which are transseries. Since the late 1990s, van den Dries, van der Hoeven, and myself, have pursued a program to understand the algebraic and model-theoretic aspects of this intricate but fascinating mathematical object. A differential analogue of “henselianity" is central to this program. Last year we were able to make a significant step forward, and established a quantifier elimination theorem for the differential field of transseries in a natural language. My goal for this talk is to introduce transseries without prior knowledge of the subject, and to explain our recent work.[-]
The concept of a "transseries" is a natural extension of that of a Laurent series, allowing for exponential and logarithmic terms. Transseries were introduced in the 1980s by the analyst Écalle and also, independently, by the logicians Dahn and Göring. The germs of many naturally occurring real-valued functions of one variable have asymptotic expansions which are transseries. Since the late 1990s, van den Dries, van der Hoeven, and myself, have ...[+]

03C10 ; 03C64 ; 26A12

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
La sous-représentation des femmes dans les filières et carrières scientifiques est un constat récurrent au niveau international. Problématique pour de multiples raisons, notamment éthiques, juridiques, et économiques, cette sous-représentation est également au coeur du débat sur l'idée d'une infériorité des femmes dans les sciences dites « dures ». Observée à partir de tests standardisés, l'infériorité des femmes serait évidente à partir du lycée, principalement en mathématiques, et sur les items les plus difficiles des tests. D'où l'idée qu'en mathématiques, les femmes atteindraient leurs "limites biologiques" plus vite que les hommes. Depuis une vingtaine d'années, les travaux sur l'effet de menace du stéréotype (Steele, 1997) ont permis d'apporter un nouvel éclairage sur les inégalités hommes/femmes en mathématiques. Les différences observées sont considérées comme l'expression de contraintes sociales et culturelles (plutôt que de contraintes essentiellement biologiques) en rapport avec l'action d'un stéréotype forçant les femmes à se comparer défavorablement aux hommes dans les disciplines scientifiques. Confrontées à des tests difficiles, les femmes subiraient une pression supplémentaire liée à la crainte de confirmer ce stéréotype. L'anxiété et la distraction cognitive qui en résultent viendraient interférer avec la réalisation du test et conduiraient les femmes à produire des performances suboptimales. Nous illustrerons l'influence subtile de la menace du stéréotype dans le maintien des inégalités hommes/femmes en mathématiques, à travers la présentation des résultats diverses recherches fondamentales et appliquées. Nous illustrerons également les différentes interventions qui ont été proposées pour lutter contre le phénomène de menace du stéréotype et pour encourager les filles/femmes à davantage investir les filières scientifiques, véritable enjeu de société aujourd'hui.

Mots clés : menace du stéréotype - disciplines scientifiques - différences de genre - performance - stéréotype implicite[-]
La sous-représentation des femmes dans les filières et carrières scientifiques est un constat récurrent au niveau international. Problématique pour de multiples raisons, notamment éthiques, juridiques, et économiques, cette sous-représentation est également au coeur du débat sur l'idée d'une infériorité des femmes dans les sciences dites « dures ». Observée à partir de tests standardisés, l'infériorité des femmes serait évidente à partir du ...[+]

00A05 ; 00A06 ; 97CXX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Table ronde: qu'est-ce qui peut contribuer à rendre les mathématiques plus vivantes dans les classes ? - Brébant, Olivier (Auteur de la Conférence) ; Garcia, Thomas (Auteur de la Conférence) ; Loret, Francis (Auteur de la Conférence) ; Méjani, Farida (Auteur de la Conférence) ; Théric, Valérie (Auteur de la Conférence) ; Arnoux, Pierre (Animateur) | CIRM H

Multi angle

Comment enrichir son enseignement pour des mathématiques qui transportent ? Cinq professeurs de mathématiques feront part de leurs pratiques et réflexions.

00A05 ; 97DXX ; 00A09

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview at CIRM: Sylvia Serfaty - Serfaty, Sylvia (Personne interviewée) | CIRM H

Post-edited

Sylvia Serfaty is a Professor at the Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6. Sylvia Serfaty was a Global Distinguished Professor of Mathematics in the Courant Institute of Mathematical Sciences. She has been awarded a Sloan Foundation Research Fellowship and a NSF CAREER award (2003), the 2004 European Mathematical Society Prize, 2007 EURYI (European Young Investigator) award, and has been invited speaker at the International Congress of Mathematicians (2006), Plenary speaker at the European Congress of Mathematics (2012) and has recently received the IAMP Henri Poincar´e prize in 2012. Her research is focused on the study of Nonlinear Partial Differential Equations, calculus of variations and mathematical physics, in particular the Ginzburg-Landau superconductivity model. Sylvia Serfaty was the first to make a systematic and impressive asymptotic analysis for the case of large parameters in theory of the Ginzburg-Landau equation. She established precisely, with Etienne Sandier, the values of the first critical fields for nucleation of vortices in superconductors, as well as the leading and next to leading order effective energies that govern the location of these vortices and their arrangement in Abrikosov lattices In micromagnetics, her work with F. Alouges and T. Rivière breaks new ground on singularly perturbed variational problems and provides the first explanation for the internal structure of cross-tie walls.
http://www.ams.org/journals/notices/200409/people.pdf
Personal page : http://www.ann.jussieu.fr/~serfaty/[-]
Sylvia Serfaty is a Professor at the Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6. Sylvia Serfaty was a Global Distinguished Professor of Mathematics in the Courant Institute of Mathematical Sciences. She has been awarded a Sloan Foundation Research Fellowship and a NSF CAREER award (2003), the 2004 European Mathematical Society Prize, 2007 EURYI (European Young Investigator) award, and has been invited speaker at ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Integrable probability - Lecture 1 - Corwin, Ivan (Auteur de la Conférence) | CIRM H

Post-edited

A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...[+]

82C22 ; 82B23 ; 60H15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Integrable probability - Lecture 2 - Corwin, Ivan (Auteur de la Conférence) | CIRM H

Multi angle

A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...[+]

82C22 ; 82B23 ; 60H15

Sélection Signaler une erreur