Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An elegant theorem by J.L. Lions establishes well-posedness of non-autonomous evolutionary problems in Hilbert spaces which are defined by a non-autonomous form. However a regularity problem remained open for many years. We give a survey on positive and negative (partially very recent) results. One of the positive results can be applied to an evolutionary network which has been studied by Dominik Dier and Marjeta Kramar jointly with the speaker. It is governed by non-autonomous Kirchhoff conditions at the vertices of the graph. Also the diffusion coefficients may depend on time. Besides existence and uniqueness long-time behaviour can be described. When conductivity and diffusion coefficients match (so that mass is conserved) the solutions converge to an equilibrium.
[-]
An elegant theorem by J.L. Lions establishes well-posedness of non-autonomous evolutionary problems in Hilbert spaces which are defined by a non-autonomous form. However a regularity problem remained open for many years. We give a survey on positive and negative (partially very recent) results. One of the positive results can be applied to an evolutionary network which has been studied by Dominik Dier and Marjeta Kramar jointly with the speaker. ...
[+]
65N30 ; 46B20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the task of sampling measures in high dimensions we will discuss a number of gradient flows in the spaces of measures, including the Wasserstein gradient flows of Maximum Mean Discrepancy and Hellinger gradient flows of relative entropy, the Stein Variational Gradient Descent and a new projected dynamic gradient flows. For all the flows we will consider their deterministic interacting-particle approximations. The talk is highlight some of the properties of the flows and indicate their differences. In particular we will discuss how well can the interacting particles approximate the target measures.The talk is based on joint works wit Anna Korba, Lantian Xu, Sangmin Park, Yulong Lu, and Lihan Wang.
[-]
Motivated by the task of sampling measures in high dimensions we will discuss a number of gradient flows in the spaces of measures, including the Wasserstein gradient flows of Maximum Mean Discrepancy and Hellinger gradient flows of relative entropy, the Stein Variational Gradient Descent and a new projected dynamic gradient flows. For all the flows we will consider their deterministic interacting-particle approximations. The talk is highlight ...
[+]
35Q62 ; 35Q70 ; 82C21 ; 62D05 ; 45M05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the goals of shape analysis is to model and characterise shape evolution. We focus on methods where this evolution is modeled by the action of a time-dependent diffeomorphism, which is characterised by its time-derivatives: vector fields. Reconstructing the evolution of a shape from observations then amounts to determining an optimal path of vector fields whose flow of diffeomorphisms deforms the initial shape in accordance with the observations. However, if the space of considered vector fields is not constrained, optimal paths may be inaccurate from a modeling point of view. To overcome this problem, the notion of deformation module allows to incorporate prior information from the data into the set of considered deformations and the associated metric. I will present this generic framework as well as the Python library IMODAL, which allows to perform registration using such structured deformations. More specifically, I will focus on a recent implicit formulation where the prior can be expressed as a property that the generated vector field should satisfy. This imposed property can be of different categories that can be adapted to many use cases, such as constraining a growth pattern or imposing divergence-free fields.
[-]
One of the goals of shape analysis is to model and characterise shape evolution. We focus on methods where this evolution is modeled by the action of a time-dependent diffeomorphism, which is characterised by its time-derivatives: vector fields. Reconstructing the evolution of a shape from observations then amounts to determining an optimal path of vector fields whose flow of diffeomorphisms deforms the initial shape in accordance with the ...
[+]
68U10 ; 49N90 ; 49N45 ; 51P05 ; 53-04 ; 53Z05 ; 58D30 ; 65D18 ; 68-04 ; 92C15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid–structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties.
[-]
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...
[+]
74S05 ; 76M10 ; 74F10 ; 76D05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid–structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties.
[-]
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...
[+]
74S05 ; 76M10 ; 74F10 ; 76D05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this presentation, we will first present the main goals and principles of reservoir simulation. Then we will focus on linear systems that arise in such simulation. The main HPC challenge is to solve those systems efficiently on massively parallel computers. The specificity of those systems is that their convergence is mostly governed by the elliptic part of the equations and the linear solver needs to take advantage of it to be efficient. The reference method in reservoir simulation is CPR-AMG which usually relies on AMG to solve the quasi elliptic part of the system. We will present some works on improving AMG scalability for the reservoir linear systems (work done in collaboration with CERFACS). We will then introduce an on-going work with INRIA to take advantage of their enlarged Krylov method (EGMRES) in the CPR method.
[-]
In this presentation, we will first present the main goals and principles of reservoir simulation. Then we will focus on linear systems that arise in such simulation. The main HPC challenge is to solve those systems efficiently on massively parallel computers. The specificity of those systems is that their convergence is mostly governed by the elliptic part of the equations and the linear solver needs to take advantage of it to be efficient. The ...
[+]
65F10 ; 65N22 ; 65Y05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three fields methods, fictitious domain methods or certified reduced basis. We shall present an overview of the various ingredients as well as some illustrations. The ingredients include a very expressive embedded language, seamless interpolation, mesh adaption, seamless parallelisation. As to the illustrations, they exercise the versatility of the framework either by allowing the development and/or numerical verification of (new) mathematical methods or the development of large multi-physics applications - e.g. fluid-structure interaction using either an Arbitrary Lagrangian Eulerian formulation or a levelset based one; high field magnets modeling which involves electro-thermal, magnetostatics, mechanical and thermo-hydraulics model; ... - The range of users span from mechanical engineers in industry, physicists in complex fluids, computer scientists in biomedical applications to applied mathematicians thanks to the shared common mathematical embedded language hiding linear algebra and computer science complexities.
[-]
I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three ...
[+]
65N30 ; 65N55 ; 65Y05 ; 65Y15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We review how to bound the error between the unknown weak solution of a PDE and its numerical approximation via a fully computable a posteriori estimate. We focus on approximations obtained at an arbitrary step of a linearization (Newton-Raphson, fixed point, ...) and algebraic solver (conjugate gradients, multigrid, domain decomposition, ...). Identifying the discretization, linearization, and algebraic error components, we design local stopping criteria which keep them in balance. This gives rise to a fully adaptive inexact Newton method. Numerical experiments are presented in confirmation of the theory.
[-]
We review how to bound the error between the unknown weak solution of a PDE and its numerical approximation via a fully computable a posteriori estimate. We focus on approximations obtained at an arbitrary step of a linearization (Newton-Raphson, fixed point, ...) and algebraic solver (conjugate gradients, multigrid, domain decomposition, ...). Identifying the discretization, linearization, and algebraic error components, we design local ...
[+]
65N15 ; 65N22 ; 65Y05