En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37D25 15 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Fast slow systems with chaotic noise - Kelly, David (Author of the conference) | CIRM H

Multi angle

It has long been observed that multi-scale systems, particularly those in climatology, exhibit behavior typical of stochastic models, most notably in the unpredictability and statistical variability of events. This is often in spite of the fact that the underlying physical model is completely deterministic. One possible explanation for this stochastic behavior is deterministic chaotic effects. In fact, it has been well established that the statistical properties of chaotic systems can be well approximated by stochastic differential equations. In this talk, we focus on fast-slow ODEs, where the fast, chaotic variables are fed into the slow variables to yield a diffusion approximation. In particular we focus on the case where the chaotic noise is multidimensional and multiplicative. The tools from rough path theory prove useful in this difficult setting.[-]
It has long been observed that multi-scale systems, particularly those in climatology, exhibit behavior typical of stochastic models, most notably in the unpredictability and statistical variability of events. This is often in spite of the fact that the underlying physical model is completely deterministic. One possible explanation for this stochastic behavior is deterministic chaotic effects. In fact, it has been well established that the ...[+]

60H10 ; 37D20 ; 37D25 ; 37A50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give a necessary and sufficient condition for the existence of infinitely many non-arithmetic Teichmuller curves in a stratum of abelian differentials. This is joint work with Simion Filip and Alex Wright.

30F30 ; 32G15 ; 32G20 ; 14D07 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...[+]

37D35 ; 37D40 ; 37C40 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study skew products of circle diffeomorphisms over a shift space. Our primary motivation is the fact that they capture some key mechanisms of nonhyperbolic behavior of robustly transitive dynamical systems. We perform a multifractal analysis of fiber-Lyapunov exponents studying the topological entropy of fibers with equal exponent. This includes the study of restricted variational principles of the entropy of ergodic measures with given fiber-exponent, in particular, with exponent zero. This enables to understand transitive dynamical systems in which hyperbolicities of different type are intermingled. Moreover, it enables to 'quantify of the amount of non-hyperbolicity' in a context where any other tools presently available fail. This is joint work with L.J. Díaz and M. Rams.[-]
We study skew products of circle diffeomorphisms over a shift space. Our primary motivation is the fact that they capture some key mechanisms of nonhyperbolic behavior of robustly transitive dynamical systems. We perform a multifractal analysis of fiber-Lyapunov exponents studying the topological entropy of fibers with equal exponent. This includes the study of restricted variational principles of the entropy of ergodic measures with given ...[+]

37B10 ; 37D25 ; 37D35 ; 37D30 ; 28D20 ; 28D99

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We obtain results on mixing and rates of mixing for infinite measure semiflows and flows. The results on rates of mixing rely on operator renewal theory and a Dolgopyat-type estimate. The results on mixing hold more generally and are based on a deterministic (ie non iid) version of Erickson's continuous time strong renewal theorem.

37A25 ; 37A40 ; 37A50 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise Pène.[-]
​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise ...[+]

37D50 ; 37A25 ; 60F05 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...[+]

37D35 ; 37D40 ; 37C40 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...[+]

37D35 ; 37D40 ; 37C40 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...[+]

37C05 ; 37C40 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...[+]

37C05 ; 37C40 ; 37D25

Bookmarks Report an error