Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is a report on the construction of $p$-adic $L$-functions attached to ordinary families of holomorphic modular forms on the unitary groups of $n$-dimensional hermitian vector spaces over $CM$ fields. The results have been obtained over a period of nearly 15 years in joint work with Ellen Eischen, Jian-Shu Li, and Chris Skinner. The $p$-adic $L$-functions specialize at classical points to critical values of standard $L$-functions of cohomological automorphic forms on unitary groups, or equivalently of cohomological automorphic forms on $GL(n)$ that satisfy a polarization condition. When $n = 1$ one recovers Katz's construction of $p$-adic $L$-functions of Hecke characters.
[-]
This is a report on the construction of $p$-adic $L$-functions attached to ordinary families of holomorphic modular forms on the unitary groups of $n$-dimensional hermitian vector spaces over $CM$ fields. The results have been obtained over a period of nearly 15 years in joint work with Ellen Eischen, Jian-Shu Li, and Chris Skinner. The $p$-adic $L$-functions specialize at classical points to critical values of standard $L$-functions of ...
[+]
11F33 ; 11R23 ; 14G35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We introduce a generalization of Temkin's reduction in an absolute setting. It takes the form of a category of graded log schemes, containing valuative spaces as a full subcategory, as well as more exotic objects such as the reduction mod $p^{n}$ of a p-adic rigid space. We will compare the log étale and log syntomic topologies on these objects, and we will show that the ramification filtrations of Abbes-Saito, Saito and Kato-Thatte measure precisely the lack of topological invariance of the corresponding log syntomic toposes. As a byproduct, we recover and generalize results of Deligne and Hattori on the ramification of extensions of truncated discrete valuation rings.
[-]
We introduce a generalization of Temkin's reduction in an absolute setting. It takes the form of a category of graded log schemes, containing valuative spaces as a full subcategory, as well as more exotic objects such as the reduction mod $p^{n}$ of a p-adic rigid space. We will compare the log étale and log syntomic topologies on these objects, and we will show that the ramification filtrations of Abbes-Saito, Saito and Kato-Thatte measure ...
[+]
14A21 ; 14A20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the representation comes from a $Q_{p}$-representation of a $p$-adic Lie group quotient of the fundamental group, we describe its Lie algebra action in terms of the Sen operators, which is a generalization of a result of Sen-Ohkubo. These Sen operators can be extended continuously to certain infinite-dimensional representations. As an application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing a result of Pan.
[-]
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the ...
[+]
11F80 ; 14F35 ; 14F30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a $p$-adic local system $L$ on a smooth algebraic variety $X$ over a finite extension $K$ of $Q_{p}$, it is always possible to find a de Rham local system $M$ on $X$ such that the underlying local system $\left.L\right|_{X_{\bar{K}}}$ embeds into $\left.M\right|_{X_{\bar{K}}}$. I will outline the proof that relies on the $p$-adic Riemann-Hilbert correspondence of Diao-Lan-Liu-Zhu. As a consequence, the action of the Galois group $G_{K}$ on the pro-algebraic completion of the étale fundamental group of $X_{\bar{K}}$ is de Rham, in the sense that every finite-dimensional subrepresentation of the ring of regular functions on that group scheme is de Rham. This implies that every finite-dimensional subrepresentation of the ring of regular functions on the pro-algebraic completion of the geometric pi $i_{1}$ of a smooth variety over a number field satisfies the assumptions of the Fontaine-Mazur conjecture. Complementing this result, I will sketch a proof of the fact that every semi-simple representation of $G a l(\bar{Q} / Q)$ arising from geometry is a subquotient of the ring of regular functions on the pro-algebraic completion of the fundamental group of the projective line with 3 punctures.
[-]
Given a $p$-adic local system $L$ on a smooth algebraic variety $X$ over a finite extension $K$ of $Q_{p}$, it is always possible to find a de Rham local system $M$ on $X$ such that the underlying local system $\left.L\right|_{X_{\bar{K}}}$ embeds into $\left.M\right|_{X_{\bar{K}}}$. I will outline the proof that relies on the $p$-adic Riemann-Hilbert correspondence of Diao-Lan-Liu-Zhu. As a consequence, the action of the Galois group $G_{K}$ on ...
[+]
14G20 ; 14F35 ; 14D10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Hasse-Weil zeta function of a regular proper flat scheme over the integers is expected to extend meromorphically to the whole complex plane and satisfy a functional equation. The local epsilon factors of vanishing cycles are the local factors of the constant term in the functional equation. For their absolute values, Bloch proposed a conjecture, called Bloch's conductor formula, which describes them in terms of the Euler characteristics of a certain (complex of) coherent sheaf. In this talk, under the assumption that the non-smooth locus is isolated and that the residue characteristic is odd, I explain that the coherent sheaf appearing in the Bloch's conjecture is naturally endowed with a quadratic form and I would like to propose a conjecture that describes the local epsilon factors themselves in terms of the quadratic form. The conjecture holds true in the following cases: 1) for non-degenerate quadratic singularities, 2) for finite extensions of local fields, or 3) in the positive characteristic case.
[-]
The Hasse-Weil zeta function of a regular proper flat scheme over the integers is expected to extend meromorphically to the whole complex plane and satisfy a functional equation. The local epsilon factors of vanishing cycles are the local factors of the constant term in the functional equation. For their absolute values, Bloch proposed a conjecture, called Bloch's conductor formula, which describes them in terms of the Euler characteristics of a ...
[+]
11E08 ; 14B05 ; 11G25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Peter Scholze became known as a mathematician after finishing his Bachelor's degree in three semesters and his Master's degree in two further semesters. Scholze's subsequent PhD-thesis on Perfectoid spaces yields the solution to a special case of the weight-monodromy conjecture.
He was made full professor shortly after completing his PhD, the youngest full professor in Germany.
Since July 2011 Scholze is a Fellow of the Clay Mathematics Institute. In 2012 he was awarded the Prix and Cours Peccot. He was awarded the 2013 SASTRA Ramanujan Prize. In 2014 he received the Clay Research Award. In 2015 he will be awarded the Frank Nelson Cole Prize in Algebra, and also the Ostrowski Prize.
According to the University of Bonn and to his peers, Peter is one of the most brilliant researchers in his field...
[-]
Peter Scholze became known as a mathematician after finishing his Bachelor's degree in three semesters and his Master's degree in two further semesters. Scholze's subsequent PhD-thesis on Perfectoid spaces yields the solution to a special case of the weight-monodromy conjecture.
He was made full professor shortly after completing his PhD, the youngest full professor in Germany.
Since July 2011 Scholze is a Fellow of the Clay Mathematics ...
[+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.