Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula.
[-]
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...
[+]
12H25 ; 14G22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients.
[-]
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. ...
[+]
32P05 ; 14F20 ; 14F40 ; 14G22 ; 32S30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Berkovich spaces over $\mathbb{Z}$ may be seen as fibrations containing complex analytic spaces as well as $p$-adic analytic spaces, for every prime number $p$. We will give an introduction to those spaces and explain how they may be used in an arithmetic context to prove height inequalities. As an application, following a strategy by DeMarco-Krieger-Ye, we will give a proof of a conjecture of Bogomolov-Fu-Tschinkel on uniform bounds on the number of common images on P1 of torsion points of two elliptic curves.
[-]
Berkovich spaces over $\mathbb{Z}$ may be seen as fibrations containing complex analytic spaces as well as $p$-adic analytic spaces, for every prime number $p$. We will give an introduction to those spaces and explain how they may be used in an arithmetic context to prove height inequalities. As an application, following a strategy by DeMarco-Krieger-Ye, we will give a proof of a conjecture of Bogomolov-Fu-Tschinkel on uniform bounds on the ...
[+]
11G05 ; 11G50 ; 37P50 ; 37P15 ; 14G22