Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Complex projective structures, or PSL( $2, \mathbb{C})$-opers, play a central role in the theory of uniformization of Riemann surfaces. A very natural generalization of this notion is to consider complex projective structures with ramification points. This gives rise to the notion of branched projective structure, which is much more flexible in many aspects. For example, any representation of a surface group with values in $\operatorname{PSL}(2, \mathbb{C})$ is obtained as the holonomy of a branched projective structure. We will show that one of the central properties of complex projective structures, namely the complex analytic structure of their moduli spaces, extends to the branched case.
[-]
Complex projective structures, or PSL( $2, \mathbb{C})$-opers, play a central role in the theory of uniformization of Riemann surfaces. A very natural generalization of this notion is to consider complex projective structures with ramification points. This gives rise to the notion of branched projective structure, which is much more flexible in many aspects. For example, any representation of a surface group with values in $\operatorname{PSL}(2, ...
[+]
53-XX ; 57M50 ; 14H15 ; 32G15 ; 14H30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in each moduli space. The proofs use recent results in Teichmüller dynamics, especially joint work with Eskin and Filip on the Kontsevich-Zorich cocycle. Joint work with McMullen and Mukamel as well as Eskin, McMullen and Mukamel shows that exotic examples of "higher dimensional Teichmüller discs" do exist.
[-]
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in ...
[+]
30F60 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of connections on the punctured disc, where the structure group is the infinite-dimensional group of symplectic automorphisms of an algebraic torus. I will not assume any knowledge of stability conditions, DT invariants etc.
[-]
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of ...
[+]
14F05 ; 18E30 ; 14D20 ; 81T20 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show how recent results of the authors on equidistribution of square-tiled surfaces of given combinatorial type allow to compute approximate values of Masur-Veech volumes of the strata in the moduli spaces of Abelian and quadratic differentials by Monte Carlo method.
We also show how similar approach allows to count asymptotical number of meanders of fixed combinatorial type in various settings in all genera. Our formulae are particularly efficient for classical meanders in genus zero.
We construct a bridge between flat and hyperbolic worlds giving a formula for the Masur-Veech volume of the moduli space of quadratic differentials in terms of intersection numbers of $\mathcal{M}_{g,n}$ (in the spirit of Mirzakhani's formula for Weil-Peterson volume of the moduli space of pointed curves).
Joint work with V. Delecroix, E. Goujard, P. Zograf.
[-]
We show how recent results of the authors on equidistribution of square-tiled surfaces of given combinatorial type allow to compute approximate values of Masur-Veech volumes of the strata in the moduli spaces of Abelian and quadratic differentials by Monte Carlo method.
We also show how similar approach allows to count asymptotical number of meanders of fixed combinatorial type in various settings in all genera. Our formulae ...
[+]
32G15 ; 05C30 ; 05Axx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.