En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32G15 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Moduli spaces of branched projective structures - Billon, Gustave (Auteur de la Conférence) | CIRM H

Multi angle

Complex projective structures, or PSL( $2, \mathbb{C})$-opers, play a central role in the theory of uniformization of Riemann surfaces. A very natural generalization of this notion is to consider complex projective structures with ramification points. This gives rise to the notion of branched projective structure, which is much more flexible in many aspects. For example, any representation of a surface group with values in $\operatorname{PSL}(2, \mathbb{C})$ is obtained as the holonomy of a branched projective structure. We will show that one of the central properties of complex projective structures, namely the complex analytic structure of their moduli spaces, extends to the branched case.[-]
Complex projective structures, or PSL( $2, \mathbb{C})$-opers, play a central role in the theory of uniformization of Riemann surfaces. A very natural generalization of this notion is to consider complex projective structures with ramification points. This gives rise to the notion of branched projective structure, which is much more flexible in many aspects. For example, any representation of a surface group with values in $\operatorname{PSL}(2, ...[+]

53-XX ; 57M50 ; 14H15 ; 32G15 ; 14H30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give a necessary and sufficient condition for the existence of infinitely many non-arithmetic Teichmuller curves in a stratum of abelian differentials. This is joint work with Simion Filip and Alex Wright.

30F30 ; 32G15 ; 32G20 ; 14D07 ; 37D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will present a geometric criterion for the ergodicity of the billiard flow in a polygon with non-rational angles and discuss its application to the Diophantine case.

37D40 ; 37D50 ; 30F10 ; 30F60 ; 32G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss the current status of the problem of understanding the closures of the strata of curves together with a differential with a prescribed configuration of zeroes, in the Deligne-Mumford moduli space of stable curves.

30F10 ; 30F30 ; 14H10 ; 14H70 ; 32G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The wave equation for Weil-Petersson metrics - Melrose, Richard (Auteur de la Conférence) | CIRM H

Multi angle

In this somewhat speculative talk I will briefly describe recent results with Xuwen Zhu on the boundary behaviour of the Weil-Petersson metric (on the moduli space of Riemann surfaces) and ongoing work with Jesse Gell-Redman on the associated Laplacian. I will then describe what I think happens for the wave equation in this context and what needs to be done to prove it.

30F60 ; 32G15 ; 35L05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Flat surfaces and combinatorics - Goujard, Élise (Auteur de la Conférence) | CIRM H

Multi angle

Billiards in polygons are related to dynamics of the linear flow on flat surfaces. Through some examples of counting problems on flat surfaces and on moduli spaces of flat surfaces, we will see how combinatorics can lead to interesting dynamical results in this setting.

30F30 ; 32G15 ; 37D50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in each moduli space. The proofs use recent results in Teichmüller dynamics, especially joint work with Eskin and Filip on the Kontsevich-Zorich cocycle. Joint work with McMullen and Mukamel as well as Eskin, McMullen and Mukamel shows that exotic examples of "higher dimensional Teichmüller discs" do exist.[-]
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in ...[+]

30F60 ; 32G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wall-crossing for Donaldson-Thomas invariants - Bridgeland, Tom (Auteur de la Conférence) | CIRM H

Post-edited

There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of connections on the punctured disc, where the structure group is the infinite-dimensional group of symplectic automorphisms of an algebraic torus. I will not assume any knowledge of stability conditions, DT invariants etc.[-]
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of ...[+]

14F05 ; 18E30 ; 14D20 ; 81T20 ; 32G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show how recent results of the authors on equidistribution of square-tiled surfaces of given combinatorial type allow to compute approximate values of Masur-Veech volumes of the strata in the moduli spaces of Abelian and quadratic differentials by Monte Carlo method.
We also show how similar approach allows to count asymptotical number of meanders of fixed combinatorial type in various settings in all genera. Our formulae are particularly efficient for classical meanders in genus zero.
We construct a bridge between flat and hyperbolic worlds giving a formula for the Masur-Veech volume of the moduli space of quadratic differentials in terms of intersection numbers of $\mathcal{M}_{g,n}$ (in the spirit of Mirzakhani's formula for Weil-Peterson volume of the moduli space of pointed curves).
Joint work with V. Delecroix, E. Goujard, P. Zograf.[-]
We show how recent results of the authors on equidistribution of square-tiled surfaces of given combinatorial type allow to compute approximate values of Masur-Veech volumes of the strata in the moduli spaces of Abelian and quadratic differentials by Monte Carlo method.
We also show how similar approach allows to count asymptotical number of meanders of fixed combinatorial type in various settings in all genera. Our formulae ...[+]

32G15 ; 05C30 ; 05Axx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Counting curves of given type, revisited - Souto, Juan (Auteur de la Conférence) | CIRM H

Multi angle

Mirzakhani wrote two papers studying the asymptotic behaviour of the number of curves of a given type (simple or not) and with length at most $L$. In this talk I will explain a new independent proof of Mirzakhani's results.
This is joint work with Viveka Erlandsson.

57N05 ; 30F45 ; 30F60 ; 32G15 ; 57M50

Sélection Signaler une erreur