Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear stochastic transport equations and non-linear modulated dispersive PDEs. It is possible to show that the sample paths of Brownian motion or fractional Brownian motion and related processes have almost surely this kind of irregularity. (joint work with R. Catellier and K. Chouk)
[-]
We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear ...
[+]
35R60 ; 35Q53 ; 35D30 ; 60H15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We provide an explicit construction of a strong Feller semigroup on the space of 1d probability measures that maps bounded measurable functions into Lipschitz continuous functions, with a Lipschitz constant that blows up in an integrable manner in small time. The construction relies on a rearranged version of the stochastic heat equation on the circle driven by a coloured noise. Under the action of the rearrangement, the solution is forced to live in a space of quantile functions that is isometric to the space of probability measures on the real line. As an application, we show that the noise resulting from this approach can be used to perturb, in an ergodic manner, gradient flows on the space of 1d probability measures. We also show that the same noise can be used to enforce uniqueness to some types of mean field games.
Based on joint works with William Hammersley (Nice) and Youssef Ouknine (Marrakech).
[-]
We provide an explicit construction of a strong Feller semigroup on the space of 1d probability measures that maps bounded measurable functions into Lipschitz continuous functions, with a Lipschitz constant that blows up in an integrable manner in small time. The construction relies on a rearranged version of the stochastic heat equation on the circle driven by a coloured noise. Under the action of the rearrangement, the solution is forced to ...
[+]
60H15 ; 60G57 ; 47D07 ; 60J35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.
Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations
[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...
[+]
82C22 ; 82B23 ; 60H15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.
Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations
[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...
[+]
82C22 ; 82B23 ; 60H15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite temperature. We will also describe the numerical methods which have been developed for those models in the framework of the ANR project Becasim. These are joint works with Reika Fukuizumi, Arnaud Debussche, and Romain Poncet.
[-]
We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite ...
[+]
35Q55 ; 60H15 ; 65M06
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Backward stochastic differential equations have been a very successful and active tool for stochastic finance and insurance for some decades. More generally they serve as a central method in applications of control theory in many areas. We introduce BSDE by looking at a simple utility optimization problem in financial stochastics. We shall derive an important class of BSDE by applying the martingale optimality principle to solve an optimal investment problem for a financial agent whose income is partly affected by market external risk. We then present the basics of existence and uniqueness theory for solutions to BSDE the coefficients of which satisfy global Lipschitz conditions.
[-]
Backward stochastic differential equations have been a very successful and active tool for stochastic finance and insurance for some decades. More generally they serve as a central method in applications of control theory in many areas. We introduce BSDE by looking at a simple utility optimization problem in financial stochastics. We shall derive an important class of BSDE by applying the martingale optimality principle to solve an optimal ...
[+]
91B24 ; 60H15 ; 60H10 ; 91G80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Branching methods have recently been developed to solve some PDEs. Starting from Mckean formulation, we give the initial branching method to solve the KPP equation. We then give a formulation to solve non linear equation with a non linearity polynomial in the value function u. The methodology is extended for general non linearities in the value function u. Then we develop the methodology to solve non linear equation with non linearities polynomial in u and Du with convergence results. At last we give some numerical schemes to solve the semi-linear case and even the full non linear case but currently without convergence results.
[-]
Branching methods have recently been developed to solve some PDEs. Starting from Mckean formulation, we give the initial branching method to solve the KPP equation. We then give a formulation to solve non linear equation with a non linearity polynomial in the value function u. The methodology is extended for general non linearities in the value function u. Then we develop the methodology to solve non linear equation with non linearities ...
[+]
60H15 ; 35R60 ; 60J80