En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 68N15 11 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Böhm trees and Taylor expansion - Manzonetto, Giulio (Auteur de la Conférence) | CIRM H

Multi angle

We revise the classical theory of program approximation based on Scott-continuity and Böhm trees. We then present the more recent theory proposed by Ehrhard&Regnier, based on Taylor expansion. We first introduce the resource calculus and its properties, and then the Taylor expansion associating each term with a power series of resource terms. Finally, we show how to apply this technique to prove results in lambda calculus in an easier way.

68-02 ; 68N15 ; 68Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Weighted relational models - McCusker, Guy (Auteur de la Conférence) | CIRM H

Multi angle

Many models of (differential) linear logic and lambda-calculus can be regarded as a quantitative enrichment of the relational semantics of linear logic. This talk presents an introduction to these models, taking a simple but flexible approach. Relations can be enriched with coefficients drawn from any complete semiring — a structure which allows multiplication and infinite summation of quantities — and in each case we obtain a soundness result with respect to a quantitative operational semantics for a functional language with recursion, nondeterminism and quantitative effects. Examples include models that track the number of possible reduction paths, the length of the shortest reduction path, or the probability of termination of a program.[-]
Many models of (differential) linear logic and lambda-calculus can be regarded as a quantitative enrichment of the relational semantics of linear logic. This talk presents an introduction to these models, taking a simple but flexible approach. Relations can be enriched with coefficients drawn from any complete semiring — a structure which allows multiplication and infinite summation of quantities — and in each case we obtain a soundness result ...[+]

68Q55 ; 68N15 ; 68N18 ; 03B70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Explication de ce qu'est un buffer overflow, de la façon de l'exploiter, des protections possibles et des contournements...

68M10 ; 68N15 ; 68P25 ; 68Q60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

L'importance des langages en informatique - Berry, Gérard (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera également toutes les opérations sur les variétés pseudo-riemanniennes (variétés dotées d'un tenseur métrique) : connexion de Levi-Civita, courbure, géodésiques, isomorphismes musicaux et dualité de Hodge.Dans ce cours, nous introduirons tout d'abord la problématique du calcul tensoriel formel, en distinguant le calcul dit “abstrait” du calcul explicite. C'est ce dernier qui nous intéresse ici. Il se ramène in fine au calcul symbolique sur les composantes des champs tensoriels dans un champ de repères, ces composantes étant exprimées en termes des coordonnées d'une carte donnée.
Nous discuterons alors d'une méthode de calcul tensoriel générale, valable sur l'intégralité d'une variété donnée, sans que l'utilisateur ait à préciser dans quels champs de repères et avec quelles cartes doit s'effectuer le calcul. Cela suppose que la variété soit couverte par un atlas minimal, défini carte par carte par l'utilisateur, et soit décomposée en parties parallélisables, i.e. en ouverts couverts par un champ de repères. Ces contraintes étant satisfaites, un nombre arbitraire de cartes et de champs de repères peuvent être introduits, pourvu qu'ils soient accompagnés des fonctions de transition correspondantes.
Nous décrirons l'implémentation concrète de cette méthode dans SageMath ; elle utilise fortement la structure de dictionnaire du langage Python, ainsi que le schéma parent/élément de SageMath et le modèle de coercition associé. La méthode est indépendante du moteur de calcul formel utilisé pour l'expression symbolique des composantes tensorielles dans une carte. Nous présenterons la mise en œuvre via deux moteurs de calcul formel différents : Pynac/Maxima (le défaut dans SageMath) et SymPy. Différents champs d'application seront discutés, notamment la relativité générale et ses extensions.[-]
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera ...[+]

53-04 ; 53Axx ; 58C25 ; 68N01 ; 68N15 ; 68U05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera également toutes les opérations sur les variétés pseudo-riemanniennes (variétés dotées d'un tenseur métrique) : connexion de Levi-Civita, courbure, géodésiques, isomorphismes musicaux et dualité de Hodge.Dans ce cours, nous introduirons tout d'abord la problématique du calcul tensoriel formel, en distinguant le calcul dit “abstrait” du calcul explicite. C'est ce dernier qui nous intéresse ici. Il se ramène in fine au calcul symbolique sur les composantes des champs tensoriels dans un champ de repères, ces composantes étant exprimées en termes des coordonnées d'une carte donnée.
Nous discuterons alors d'une méthode de calcul tensoriel générale, valable sur l'intégralité d'une variété donnée, sans que l'utilisateur ait à préciser dans quels champs de repères et avec quelles cartes doit s'effectuer le calcul. Cela suppose que la variété soit couverte par un atlas minimal, défini carte par carte par l'utilisateur, et soit décomposée en parties parallélisables, i.e. en ouverts couverts par un champ de repères. Ces contraintes étant satisfaites, un nombre arbitraire de cartes et de champs de repères peuvent être introduits, pourvu qu'ils soient accompagnés des fonctions de transition correspondantes.
Nous décrirons l'implémentation concrète de cette méthode dans SageMath ; elle utilise fortement la structure de dictionnaire du langage Python, ainsi que le schéma parent/élément de SageMath et le modèle de coercition associé. La méthode est indépendante du moteur de calcul formel utilisé pour l'expression symbolique des composantes tensorielles dans une carte. Nous présenterons la mise en œuvre via deux moteurs de calcul formel différents : Pynac/Maxima (le défaut dans SageMath) et SymPy. Différents champs d'application seront discutés, notamment la relativité générale et ses extensions.[-]
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera ...[+]

53-04 ; 53Axx ; 58C25 ; 68N01 ; 68N15 ; 68U05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Taylor expansion, at work - Manzonetto, Giulio (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we define the resource calculus as a target of the Taylor development. Connections with the classical theory of program approximation based on Böhm trees are presented, and simple examples of application are given.

68-02 ; 68N15 ; 68Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Cet exposé présente un certain nombre d'exemples d'exercices de programmation sur les arbres qui peuvent être effectués dans les premières années d'université. Les programmes étant eux-mêmes des arbres, écrire des programmes qui opèrent sur des arbres permet d'écrire des programmes qui opèrent sur d'autres programmes.

68Wxx ; 68N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Formal verification of numerical analysis programs - Boldo, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

From a (partial) differential equation to an actual program is a long road. This talk will present the formal verification of all the steps of this journey. This includes the mathematical error due to the numerical scheme (method error), that is usually bounded by pen-and-paper proofs. This also includes round-off errors due to the floating-point computations.
The running example will be a C program that implements a numerical scheme for the resolution of the one-dimensional acoustic wave equation. This program is annotated to specify both method error and round-off error, and formally verified using interactive and automatic provers. Some work in progress about the finite element method will also be presented.[-]
From a (partial) differential equation to an actual program is a long road. This talk will present the formal verification of all the steps of this journey. This includes the mathematical error due to the numerical scheme (method error), that is usually bounded by pen-and-paper proofs. This also includes round-off errors due to the floating-point computations.
The running example will be a C program that implements a numerical scheme for the ...[+]

68N30 ; 68Q60 ; 68N15 ; 65Y04 ; 65G50

Sélection Signaler une erreur