Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
In this talk, I will present ColDICE[1, 2], a publicly available parallel numerical solver designed to solve the Vlasov-Poisson equations in the cold case limit. The method is based on the representation of the phase-space sheet as a conforming, self-adaptive simplicial tessellation whose vertices follow the Lagrangian equations of motion. In this presentation, I will mainly focus on describing the underlying algorithm and its practical implementation, as well as showing a few practical examples demonstrating its capabilities.
[-]
In this talk, I will present ColDICE[1, 2], a publicly available parallel numerical solver designed to solve the Vlasov-Poisson equations in the cold case limit. The method is based on the representation of the phase-space sheet as a conforming, self-adaptive simplicial tessellation whose vertices follow the Lagrangian equations of motion. In this presentation, I will mainly focus on describing the underlying algorithm and its practical ...
[+]
65Mxx ; 45K05 ; 65Y05 ; 76W05 ; 85A30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we present a three-level variant of the parareal algorithm that uses three propagators at the fine, intermediate and coarsest levels. The fine and intermediate levels can both be run in parallel, only the coarsest level propagation is completely sequential. We interpret our algorithm as a variant of three-level MGRIT, and we present a convergence analysis that uses parareal-type assumptions, i.e., those that involve Lipschitz constants on the propagators. We present numerical experiments to illustrate how sharp the estimates are for various time dependent problems.
[-]
In this talk, we present a three-level variant of the parareal algorithm that uses three propagators at the fine, intermediate and coarsest levels. The fine and intermediate levels can both be run in parallel, only the coarsest level propagation is completely sequential. We interpret our algorithm as a variant of three-level MGRIT, and we present a convergence analysis that uses parareal-type assumptions, i.e., those that involve Lipschitz ...
[+]
65L05 ; 65M22 ; 65Y05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.