Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the task of sampling measures in high dimensions we will discuss a number of gradient flows in the spaces of measures, including the Wasserstein gradient flows of Maximum Mean Discrepancy and Hellinger gradient flows of relative entropy, the Stein Variational Gradient Descent and a new projected dynamic gradient flows. For all the flows we will consider their deterministic interacting-particle approximations. The talk is highlight some of the properties of the flows and indicate their differences. In particular we will discuss how well can the interacting particles approximate the target measures.The talk is based on joint works wit Anna Korba, Lantian Xu, Sangmin Park, Yulong Lu, and Lihan Wang.
[-]
Motivated by the task of sampling measures in high dimensions we will discuss a number of gradient flows in the spaces of measures, including the Wasserstein gradient flows of Maximum Mean Discrepancy and Hellinger gradient flows of relative entropy, the Stein Variational Gradient Descent and a new projected dynamic gradient flows. For all the flows we will consider their deterministic interacting-particle approximations. The talk is highlight ...
[+]
35Q62 ; 35Q70 ; 82C21 ; 62D05 ; 45M05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by a Dirac mass in the phase-space.
[-]
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by ...
[+]
76X05 ; 82C21 ; 35Q35 ; 35Q83 ; 35Q60 ; 82D10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral analysis.
[-]
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral ...
[+]
82C40 ; 35H10 ; 35P15 ; 35Q84 ; 35R09 ; 47G20 ; 82C21 ; 82D10 ; 82D37 ; 76P05 ; 35K65 ; 35Q84 ; 46E35 ; 35K55 ; 35Q70
Déposez votre fichier ici pour le déplacer vers cet enregistrement.