En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q83 16 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.[-]
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...[+]

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An asymptotic regime for the Vlasov-Poisson system - Miot, Evelyne (Auteur de la Conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we provide a first analysis of the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density with a moving point charge.

82D10 ; 82C40 ; 35Q35 ; 35Q83 ; 35Q31

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From Vlasov-Poisson to Euler in the gyrokinetic limit - Miot, Evelyne (Auteur de la Conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by a Dirac mass in the phase-space.[-]
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by ...[+]

76X05 ; 82C21 ; 35Q35 ; 35Q83 ; 35Q60 ; 82D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We review some results on the joint mean-field and semiclassical limit of the fermionic N-body Schrödinger dynamics leading to the Vlasov equation, which is a model in kinetic theory for charged or gravitating particles. The results we present include the case of singular interactions and provide explicit estimates on the convergence rate, using the Hartree-Fock theory for interacting fermions as a bridge between many-body and Vlasov dynamics.

35Q83 ; 81V19 ; 82C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will present the approach that using time evolution of Husimi measure of the N particle wave function to get the convergence of Schrödinger to Vlasov equation in the mean field and semiclassical regime. By a reformulation of the many particle Schrödinger equation, one can get a Vlasov ‘like' kinetic equation for Husimi measure. Then the convergence will be obtained by doing appropriate error estimates in comparing these two dynamics. In this first stage result, the estimates have been obtained for regular solutions. This is a joint work with Jinyeop Lee and Matthew Liew.[-]
In this talk I will present the approach that using time evolution of Husimi measure of the N particle wave function to get the convergence of Schrödinger to Vlasov equation in the mean field and semiclassical regime. By a reformulation of the many particle Schrödinger equation, one can get a Vlasov ‘like' kinetic equation for Husimi measure. Then the convergence will be obtained by doing appropriate error estimates in comparing these two ...[+]

35Q83 ; 81V25 ; 81Q05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the limiting equation and giving a formal derivation of the former one. The second session aims at presenting the main early results concerning the derivation of an effective model starting from the microscopic model in which particle positions and velocities are fixed or given. Such a system takes the following form for example
\begin{equation}\label{eq:Stokes}
\left \{
\begin{array}{rcl}
-\Delta u+\nabla p &=& f, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
\text{div } u&=& 0, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
u&=& V_i, \text{ on } \partial B(x_i,r)\\
u&=& 0, \text{ on } \partial \Omega
\end{array}
\right.
\end{equation}
where $\Omega$ a smooth open set of $\mathbb{R}^3$, $x_1, x_2, \cdots, x_N$ are the particles position, $r$ their radius and $V_i$ the given velocity of the $i$th particle. The aim is then to perform an asymptotic analysis when the number of particles $N$ becomes large while their radius $r$ becomes small, first results have been obtained in [1,2,3] where the limit equations depend on the scale of the holes and their typical distance; Stokes equation, Darcy equation or Stokes-Brinkman equation. After recalling the recent contributions, we will present a short argument giving insights about the derivation of the Brinkman term in a simple case.

The last session of this mini-course aims at presenting the results regarding the rigorous derivation of fluid-kinetic models when taking into account the fluid-particle interactions and particle dynamics. This means that we consider the Stokes equation [1] coupled to Newton laws where we neglect particles inertia (balance of force and torque) and the motion of the center of the particles $\dot{x}_i=V_i$.

The rigorous derivation of a fluid-kinetic model in this setting have been obtained in [6,5,7] in the case $\Omega=\mathbb{R}^3$ under some separation assumptions on the particles. The obtained equation is a Transport-Stokes equation
\begin{equation}\label{eq:TS}\tag{TS}
\left\{
\begin{array}{rcl}
- \Delta u + \nabla p &=& \rho g,\\
\text{div } u&=& 0, \\
\partial_t \rho +\text{div }( ( u + \gamma^{-1} V_{\mathrm{St}})\rho) &=& 0,
\end{array}
\right.
\end{equation}
where $\gamma = \lim Nr \in (0,\infty]$.

This result is related to the mean field limit of many particles interacting through a kernel and has been extensively studied for several different problems. We present the main ideas for such a derivation using the method of reflections and stability estimates through Wasserstein distance following the approach by M. Hauray [4]. We finish by emphasizing new results based on a mean-field argument for the derivation of models of suspensions.


Several extensions have been made, we mention for instance [3] where authors considered steady Navier Stokes equation with non periodically distributed particles satisfying a minimal distance assumption and for general Dirichlet boundary conditions with uniform kinetic energy, they in particular characterized the convergence in terms of the limit of (marginals of) the empirical measure

$\rho^N(x)=\frac{1}{N} \underset{1 \leq i \leq n}{\sum} \delta_{x_i}
$

Several extensions have been then obtained. We mention [5] where the author extends the minimal distance assumption, for quantitative convergence estimates, [6] in the case of arbitrary shaped particles, the case of randomly distributed particles, fora simplified proof.
[-]
Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the ...[+]

35Q70 ; 76T20 ; 76D07 ; 35Q83

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the limiting equation and giving a formal derivation of the former one. The second session aims at presenting the main early results concerning the derivation of an effective model starting from the microscopic model in which particle positions and velocities are fixed or given. Such a system takes the following form for example
\begin{equation}\label{eq:Stokes}
\left \{
\begin{array}{rcl}
-\Delta u+\nabla p &=& f, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
\text{div } u&=& 0, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
u&=& V_i, \text{ on } \partial B(x_i,r)\\
u&=& 0, \text{ on } \partial \Omega
\end{array}
\right.
\end{equation}
where $\Omega$ a smooth open set of $\mathbb{R}^3$, $x_1, x_2, \cdots, x_N$ are the particles position, $r$ their radius and $V_i$ the given velocity of the $i$th particle. The aim is then to perform an asymptotic analysis when the number of particles $N$ becomes large while their radius $r$ becomes small, first results have been obtained in [1,2,3] where the limit equations depend on the scale of the holes and their typical distance; Stokes equation, Darcy equation or Stokes-Brinkman equation. After recalling the recent contributions, we will present a short argument giving insights about the derivation of the Brinkman term in a simple case.

The last session of this mini-course aims at presenting the results regarding the rigorous derivation of fluid-kinetic models when taking into account the fluid-particle interactions and particle dynamics. This means that we consider the Stokes equation [1] coupled to Newton laws where we neglect particles inertia (balance of force and torque) and the motion of the center of the particles $\dot{x}_i=V_i$.

The rigorous derivation of a fluid-kinetic model in this setting have been obtained in [6,5,7] in the case $\Omega=\mathbb{R}^3$ under some separation assumptions on the particles. The obtained equation is a Transport-Stokes equation
\begin{equation}\label{eq:TS}\tag{TS}
\left\{
\begin{array}{rcl}
- \Delta u + \nabla p &=& \rho g,\\
\text{div } u&=& 0, \\
\partial_t \rho +\text{div }( ( u + \gamma^{-1} V_{\mathrm{St}})\rho) &=& 0,
\end{array}
\right.
\end{equation}
where $\gamma = \lim Nr \in (0,\infty]$.

This result is related to the mean field limit of many particles interacting through a kernel and has been extensively studied for several different problems. We present the main ideas for such a derivation using the method of reflections and stability estimates through Wasserstein distance following the approach by M. Hauray [4]. We finish by emphasizing new results based on a mean-field argument for the derivation of models of suspensions.[-]
Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the ...[+]

35Q70 ; 76T20 ; 76D07 ; 35Q83

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the limiting equation and giving a formal derivation of the former one. The second session aims at presenting the main early results concerning the derivation of an effective model starting from the microscopic model in which particle positions and velocities are fixed or given. Such a system takes the following form for example
\begin{equation}\label{eq:Stokes}
\left \{
\begin{array}{rcl}
-\Delta u+\nabla p &=& f, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
\text{div } u&=& 0, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
u&=& V_i, \text{ on } \partial B(x_i,r)\\
u&=& 0, \text{ on } \partial \Omega
\end{array}
\right.
\end{equation}
where $\Omega$ a smooth open set of $\mathbb{R}^3$, $x_1, x_2, \cdots, x_N$ are the particles position, $r$ their radius and $V_i$ the given velocity of the $i$th particle. The aim is then to perform an asymptotic analysis when the number of particles $N$ becomes large while their radius $r$ becomes small, first results have been obtained in [1,2,3] where the limit equations depend on the scale of the holes and their typical distance; Stokes equation, Darcy equation or Stokes-Brinkman equation. After recalling the recent contributions, we will present a short argument giving insights about the derivation of the Brinkman term in a simple case.

The last session of this mini-course aims at presenting the results regarding the rigorous derivation of fluid-kinetic models when taking into account the fluid-particle interactions and particle dynamics. This means that we consider the Stokes equation [1] coupled to Newton laws where we neglect particles inertia (balance of force and torque) and the motion of the center of the particles $\dot{x}_i=V_i$.

The rigorous derivation of a fluid-kinetic model in this setting have been obtained in [6,5,7] in the case $\Omega=\mathbb{R}^3$ under some separation assumptions on the particles. The obtained equation is a Transport-Stokes equation
\begin{equation}\label{eq:TS}\tag{TS}
\left\{
\begin{array}{rcl}
- \Delta u + \nabla p &=& \rho g,\\
\text{div } u&=& 0, \\
\partial_t \rho +\text{div }( ( u + \gamma^{-1} V_{\mathrm{St}})\rho) &=& 0,
\end{array}
\right.
\end{equation}
where $\gamma = \lim Nr \in (0,\infty]$.

This result is related to the mean field limit of many particles interacting through a kernel and has been extensively studied for several different problems. We present the main ideas for such a derivation using the method of reflections and stability estimates through Wasserstein distance following the approach by M. Hauray [4]. We finish by emphasizing new results based on a mean-field argument for the derivation of models of suspensions.[-]
Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the ...[+]

35Q70 ; 76T20 ; 76D07 ; 35Q83

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A new commutator method for averaging lemmas (part 1) - Jabin, Pierre-Emmanuel (Auteur de la Conférence) | CIRM H

Virtualconference

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.[-]
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...[+]

35Q83 ; 35L65 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A new commutator method for averaging lemmas (part 2) - Jabin, Pierre-Emmanuel (Auteur de la Conférence) | CIRM H

Virtualconference

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.[-]
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...[+]

35Q83 ; 35L65 ; 35B65

Sélection Signaler une erreur