Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this presentation, we will first present the main goals and principles of reservoir simulation. Then we will focus on linear systems that arise in such simulation. The main HPC challenge is to solve those systems efficiently on massively parallel computers. The specificity of those systems is that their convergence is mostly governed by the elliptic part of the equations and the linear solver needs to take advantage of it to be efficient. The reference method in reservoir simulation is CPR-AMG which usually relies on AMG to solve the quasi elliptic part of the system. We will present some works on improving AMG scalability for the reservoir linear systems (work done in collaboration with CERFACS). We will then introduce an on-going work with INRIA to take advantage of their enlarged Krylov method (EGMRES) in the CPR method.
[-]
In this presentation, we will first present the main goals and principles of reservoir simulation. Then we will focus on linear systems that arise in such simulation. The main HPC challenge is to solve those systems efficiently on massively parallel computers. The specificity of those systems is that their convergence is mostly governed by the elliptic part of the equations and the linear solver needs to take advantage of it to be efficient. The ...
[+]
65F10 ; 65N22 ; 65Y05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three fields methods, fictitious domain methods or certified reduced basis. We shall present an overview of the various ingredients as well as some illustrations. The ingredients include a very expressive embedded language, seamless interpolation, mesh adaption, seamless parallelisation. As to the illustrations, they exercise the versatility of the framework either by allowing the development and/or numerical verification of (new) mathematical methods or the development of large multi-physics applications - e.g. fluid-structure interaction using either an Arbitrary Lagrangian Eulerian formulation or a levelset based one; high field magnets modeling which involves electro-thermal, magnetostatics, mechanical and thermo-hydraulics model; ... - The range of users span from mechanical engineers in industry, physicists in complex fluids, computer scientists in biomedical applications to applied mathematicians thanks to the shared common mathematical embedded language hiding linear algebra and computer science complexities.
[-]
I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three ...
[+]
65N30 ; 65N55 ; 65Y05 ; 65Y15