En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Jeanblanc, Monique 6 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study a financial market in which some assets, with prices adapted w.r.t. a reference filtration F are traded. In this presentation, we shall restrict our attention to the case where F is generated by a Brownian motion. One then assumes that an agent has some extra information, and may use strategies adapted to a larger filtration G. This extra information is modeled by the knowledge of some random time $\tau$, when this time occurs. We restrict our study to a progressive enlargement setting, and we pay particular attention to honest times. Our goal is to detect if the knowledge of $\tau$ allows for some arbitrage (classical arbitrages and arbitrages of the first kind), i.e., if using G-adapted strategies, one can make profit. The results presented here are based on two joint papers with Aksamit, Choulli and Deng, in which the authors study No Unbounded Profit with Bounded Risk (NUPBR) in a general filtration F and the case of classical arbitrages in the case of honest times, density framework and immersion setting. We shall also study the information drift and the growth of an optimal portfolio resulting from that model (forthcoming work with T. Schmidt).[-]
We study a financial market in which some assets, with prices adapted w.r.t. a reference filtration F are traded. In this presentation, we shall restrict our attention to the case where F is generated by a Brownian motion. One then assumes that an agent has some extra information, and may use strategies adapted to a larger filtration G. This extra information is modeled by the knowledge of some random time $\tau$, when this time occurs. We ...[+]

60G40 ; 60G44 ; 91B44 ; 91G10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional stochastic differential equations.
This new distance $\widetilde{W}^{2}$ is defined similarly to the classical Wasserstein distance $\widetilde{W}^{2}$ but the set of couplings is restricted to the set of laws of solutions of 2$d$-dimensional stochastic differential equations. We prove that this new distance $\widetilde{W}^{2}$ metrizes the weak topology. Furthermore this distance $\widetilde{W}^{2}$ is characterized in terms of a stochastic control problem. In the case d = 1 we can construct an explicit solution. The multi-dimensional case, is more tricky and classical results do not apply to solve the HJB equation because of the degeneracy of the differential operator. Nevertheless, we prove that this HJB equation admits a regular solution.[-]
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional ...[+]

91B70 ; 60H30 ; 60H15 ; 60J60 ; 93E20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Pricing without martingale measure - Carassus, Laurence (Author of the conference) | CIRM H

Multi angle

For several decades, the no-arbitrage (NA) condition and the martingale measures have played a major role in the financial asset's pricing theory. Here, we propose a new approach based on convex duality instead of martingale measures duality: our prices will be expressed using Fenchel conjugate and biconjugate.
This naturally leads to a weak condition of absence of arbitrage opportunity, called Absence of Immediate Profit (AIP), which asserts that the price of the zero claim should be zero. We study the link between (AIP), (NA) and the no-free lunch condition. We show in a one step model that, under (AIP), the super-hedging cost is just the payoff's concave envelop and that (AIP) is equivalent to the non-negativity of the super-hedging prices of some call option.
In the multiple-period case, for a particular, but still general setup, we propose a recursive scheme for the computation of a the super-hedging cost of a convex option. We also give some numerical illustrations.[-]
For several decades, the no-arbitrage (NA) condition and the martingale measures have played a major role in the financial asset's pricing theory. Here, we propose a new approach based on convex duality instead of martingale measures duality: our prices will be expressed using Fenchel conjugate and biconjugate.
This naturally leads to a weak condition of absence of arbitrage opportunity, called Absence of Immediate Profit (AIP), which asserts ...[+]

60G42 ; 91G10 ; 49N15 ; 90C15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Some questions in mathematics are not answered for quite some time, but just sidestepped. One of those questions is the following: What is the quantile of a multi-dimensional random variable? The "sidestepping" in this case produced so-called depth functions and depth regions, and the most prominent among them is the halfspace depth invented by Tukey in 1975, a very popular tool in statistics. When it comes to the definition of multivariate quantiles, depth functions replace cummulative distribution functions, and depth regions provide potential candidates for quantile vectors. However, Tukey depth functions, for example, do not share all features with (univariate) cdf's and do not even generalize them.
On the other hand, the naive definition of quantiles via the joint distribution function turned out to be not very helpful for statistical purposes, although it is still in use to define multivariate V@Rs (Embrechts and others) as well as stochastic dominance orders (Muller/Stoyan and others).
The crucial point and an obstacle for substantial progress for a long time is the missing (total) order for the values of a multi-dimensional random variable. On the other hand, (non-total) orders appear quite natural in financial models with proportional transaction costs (a.k.a. the Kabanov market) in form of solvency cones.
We propose new concepts for multivariate ranking functions with features very close to univariate cdf's and for set-valued quantile functions which, at the same time, generalize univariate quantiles as well as Tukey's halfspace depth regions. Our constructions are designed to deal with general vector orders for the values of random variables, and they produce unambigious lower and upper multivariate quantiles, multivariate V@Rs as well as a multivariate first order stochastic dominance relation. Financial applications to markets with frictions are discussed as well as many other examples and pictures which show the interesting geometric features of the new quantile sets.
The talk is based on: AH Hamel, D Kostner, Cone distribution functions and quantiles for multivariate random variables , J. Multivariate Analysis 167, 2018[-]
Some questions in mathematics are not answered for quite some time, but just sidestepped. One of those questions is the following: What is the quantile of a multi-dimensional random variable? The "sidestepping" in this case produced so-called depth functions and depth regions, and the most prominent among them is the halfspace depth invented by Tukey in 1975, a very popular tool in statistics. When it comes to the definition of multivariate ...[+]

62H99 ; 90B50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For large financial markets as introduced in Kramkov and Kabanov 94, there are several existing absence-of-arbitrage conditions in the literature. They all have in common that they depend in a crucial way on the discounting factor. We introduce a new concept, generalizing NAA1 (K&K 94) and NAA (Rokhlin 08), which is invariant with respect to discounting. We derive a dual characterization by a contiguity property (FTAP).We investigate connections to the in finite time horizon framework (as for example in Karatzas and Kardaras 07) and illustrate negative result by counterexamples. Based on joint work with M. Schweizer.[-]
For large financial markets as introduced in Kramkov and Kabanov 94, there are several existing absence-of-arbitrage conditions in the literature. They all have in common that they depend in a crucial way on the discounting factor. We introduce a new concept, generalizing NAA1 (K&K 94) and NAA (Rokhlin 08), which is invariant with respect to discounting. We derive a dual characterization by a contiguity property (FTAP).We investigate connections ...[+]

91C99 ; 91B02 ; 60G48

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Non-convex random sets of admissible positions naturally arise in the setting of fixed transaction costs or when only a finite range of possible transactions is considered. The talk defines set-valued risk measures in such cases and explores the situations when they return convex result, namely, when Lyapunov's theorem applies. The case of fixed transaction costs is analysed in greater details.
Joint work with Andreas Haier (FINMA, Switzerland).[-]
Non-convex random sets of admissible positions naturally arise in the setting of fixed transaction costs or when only a finite range of possible transactions is considered. The talk defines set-valued risk measures in such cases and explores the situations when they return convex result, namely, when Lyapunov's theorem applies. The case of fixed transaction costs is analysed in greater details.
Joint work with Andreas Haier (FINMA, Switzerland).[+]

91G70 ; 91G10

Bookmarks Report an error