En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Elsholtz, Christian 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A cap is a point set in affine or projective space without any three points on any line. We will discuss the current state of
the art, and give an exponential improvement for the size of caps of AG(n, p), which one can think of as (Z/pZ)^n, and PG(n,p). For certain primes, 5,11,17,23,29 and 41, we improve the asymptotic growth of these caps, for example, when p=23 from (8.091...)^n to (9-o(1))^n, as n tends to infinity.

51E20 ; 51E22 ; 05B25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hilbert cubes in arithmetic sets - Elsholtz, Christian (Auteur de la Conférence) | CIRM H

Single angle

Let $S$ be a multiplicatively defined set. Ostmann conjectured, that the set of primes cannot be (nontrivially) written as a sumset $P\sim A+B$ (even in an asymptotic sense, when finitely many deviations are allowed). The author had previously proved that there is no such ternary sumset $P\sim A+B+C$ (with $ \left |A \right |,\left |B \right |,\left |C \right |\geq 2$). More generally, in recent work we showed (with A. Harper) for certain multiplicatively defined sets $S$, namely those which can be treated by sieves, or those with some equidistribution condition of Bombieri-Vinogradov type, that again there is no (nontrivial) ternary decomposition $P\sim A+B+C$. As this covers the case of smooth numbers, this settles a conjecture of A.Sárközy.
Joint work with Adam J. Harper.[-]
Let $S$ be a multiplicatively defined set. Ostmann conjectured, that the set of primes cannot be (nontrivially) written as a sumset $P\sim A+B$ (even in an asymptotic sense, when finitely many deviations are allowed). The author had previously proved that there is no such ternary sumset $P\sim A+B+C$ (with $ \left |A \right |,\left |B \right |,\left |C \right |\geq 2$). More generally, in recent work we showed (with A. Harper) for certain ...[+]

11-XX ; 05-XX

Sélection Signaler une erreur