En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 13F60 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From $Q$-systems to quantum affine algebras and beyond - Kedem, Rinat (Auteur de la Conférence) | H

Multi angle

The theory of cluster algebras has proved useful in proving theorems about the characters of graded tensor products or Demazure modules, via the $Q$-system. Upon quantization, the algebra associated with this system is shown to be related to a quantum affine algebra. Graded characters are related to a polynomial representation of the quantum cluster variables. This immediately suggests a further deformation to the spherical DAHA, quantum toroidal algebras and elliptic Hall algebras.[-]
The theory of cluster algebras has proved useful in proving theorems about the characters of graded tensor products or Demazure modules, via the $Q$-system. Upon quantization, the algebra associated with this system is shown to be related to a quantum affine algebra. Graded characters are related to a polynomial representation of the quantum cluster variables. This immediately suggests a further deformation to the spherical DAHA, quantum ...[+]

13F60 ; 17B37 ; 81R50 ; 17B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and the amplituhedron - definition - Williams, Lauren K. (Auteur de la Conférence) | H

Multi angle

I will give an introduction to the amplituhedron, a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in the context of scattering amplitudes in N=4 super Yang Mills theory. I will focus in particular on its connections to cluster algebras, including the cluster adjacency conjecture. (Based on joint works with multiple coauthors, especially Evan-Zohar, Lakrec, Parisi, Sherman-Bennett, and Tessler.)[-]
I will give an introduction to the amplituhedron, a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in the context of scattering amplitudes in N=4 super Yang Mills theory. I will focus in particular on its connections to cluster algebras, including the cluster adjacency conjecture. (Based on joint works with multiple coauthors, especially Evan-Zohar, Lakrec, Parisi, Sherman-Bennett, and ...[+]

05Exx ; 13F60 ; 14M15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Cluster algebras and categorification - Lecture 1 - Amiot, Claire (Auteur de la Conférence) | H

Post-edited

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and categorification - Lecture 2 - Amiot, Claire (Auteur de la Conférence) | H

Multi angle

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and categorification - Lecture 3 - Amiot, Claire (Auteur de la Conférence) | H

Multi angle

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The coherent Satake category - Williams, Harold (Auteur de la Conférence) | H

Multi angle

The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and its monoidal product is not symmetric. We show however that it is rigid and admits renormalized r-matrices similar to those appearing in the theory of quantum loop or KLR algebras. Applying the framework developed by Kang-Kashiwara-Kim-Oh in their proof of the dual canonical basis conjecture, we use these results to show that the coherent Satake category of $GL_n$ is a monoidal cluster categorification in the sense of Hernandez-Leclerc. This clarifies the physical meaning of the coherent Satake category: simple perverse coherent sheaves correspond to Wilson-'t Hooft operators in $\mathcal{N} = 2$ gauge theory, just as simple perverse sheaves correspond to 't Hooft operators in $\mathcal{N} = 4$ gauge theory following the work of Kapustin-Witten. Our results also explain the appearance of identical quivers in the work of Kedem-Di Francesco on $Q$-systems and in the context of BPS quivers. More generally, our construction of renormalized r-matrices works in any chiral $E_1$-category, providing a new way of understanding the ubiquity of cluster algebras in $\mathcal{N} = 2$ field theory: the existence of renormalized r-matrices, hence of iterated cluster mutation, is a formal feature of such theories after passing to their holomorphic-topological twists. This is joint work with Sabin Cautis (arXiv:1801.08111).[-]
The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and ...[+]

14D24 ; 14F05 ; 14M15 ; 18D10 ; 13F60 ; 17B37 ; 81T13

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Preprojective algebras and Cluster categories - Iyama, Osamu (Auteur de la Conférence) | H

Multi angle

The preprojective algebra $P$ of a quiver $Q$ has a family of ideals $I_w$ parametrized by elements $w$ in the Coxeter group $W$. For the factor algebra $P_w = P/I_w$, I will discuss tilting and cluster tilting theory for Cohen-Macaulay $P_w$-modules following works by Buan-I-Reiten-Scott, Amiot-Reiten-Todorov and Yuta Kimura.

13F60 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Morsifications and mutations - Fomin, Sergey (Auteur de la Conférence) | H

Post-edited

I will discuss a connection between the topology of isolated singularities of plane curves and the mutation equivalence of the quivers associated with their morsifications. Joint work with Pavlo Pylyavskyy, Eugenii Shustin, and Dylan Thurston.

13F60 ; 20F36 ; 57M25 ; 58K65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
S. Cautis and H. Williams identified the equivariant K-theory of the affine Grassmannian of $GL(n)$ with a quantum unipotent cell of $LSL(2)$. Under this identification the classes of irreducible equivariant perverse coherent sheaves go to the dual canonical basis.
This is a joint work with Ryo Fujita.

14M15 ; 13F60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the framework of the study of K-theoretical Coulomb branches, Finkelberg-Tsymbaliuk introduced remarkable new algebras, the shifted quantum affine algebras an their truncations, in the spirit of the shifted Yangians of Brundan-Kleshev, Braverman-Finkelberg Nakajima, Kamnitzer-Webster-Weekes-Yacobi... We discuss the following points in representation theory of (truncated) shifted quantum affine algebras that we relate to representations of Borel quantum affine algebras by induction and restriction functors. We establish that the Grothendieck ring of the category of finite-dimensional representations has a natural cluster algebra structure. We propose a conjectural parametrization of simple modules of a non simply-laced truncation in terms of the Langlands dual quantum affine Lie algebra. We have several evidences, including a general result for simple finite-dimensional representations proved by using the Baxter polynomiality of quantum integrable models.[-]
In the framework of the study of K-theoretical Coulomb branches, Finkelberg-Tsymbaliuk introduced remarkable new algebras, the shifted quantum affine algebras an their truncations, in the spirit of the shifted Yangians of Brundan-Kleshev, Braverman-Finkelberg Nakajima, Kamnitzer-Webster-Weekes-Yacobi... We discuss the following points in representation theory of (truncated) shifted quantum affine algebras that we relate to representations of ...[+]

17B37 ; 17B10 ; 82B23 ; 13F60

Sélection Signaler une erreur