En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Fragalà, Ilaria 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Some new inequalities for the Cheeger constant - Fragalà, Ilaria (Auteur de la Conférence) | CIRM H

Post-edited

We discuss some new results for the Cheeger constant in dimension two, including:
- a polygonal version of Faber-Krahn inequality;
- a reverse isoperimetric inequality for convex bodies;
- a Mahler-type inequality in the axisymmetric setting;
- asymptotic behaviour of optimal partition problems.
Based on some recent joint works with D.Bucur,
and for the last part also with B.Velichkov and G.Verzini.

49Q10 ; 52B60 ; 35P15 ; 52A40 ; 52A10 ; 35A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Upper and lower bounds for some shape functionals - Buttazzo, Giuseppe (Auteur de la Conférence) | CIRM H

Virtualconference

The relations between some quantities related to the Laplace operator are considered. In particular, principal eigenvalue and torsional rigidity are studied in the class of general domains, convex domains, and domains with a small thickness. This allows to obtain a detailed description of the Blasche-Santaló diagram of the two quantities. Several open questions are discussed, in particular when the Laplacian is replaced by the $p$-Laplacian.

49Q10 ; 35J20 ; 35D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Spectrum of the Möbius strip: true, fake and not-so-fake - Krejcirik, David (Auteur de la Conférence) | CIRM H

Virtualconference

The Laplace–Beltrami operator in the curved Möbius strip is investigated in the limit when the width of the strip tends to zero. By establishing a norm-resolvent convergence, it is shown that spectral properties of the operator are approximated well by an unconventional flat model whose spectrum can be computed explicitly in terms of Mathieu functions. Contrary to the traditional flat Möbius strip, our effective model contains a geometric potential. A comparison of the three models is made and analytical results are accompanied by numerical computations.[-]
The Laplace–Beltrami operator in the curved Möbius strip is investigated in the limit when the width of the strip tends to zero. By establishing a norm-resolvent convergence, it is shown that spectral properties of the operator are approximated well by an unconventional flat model whose spectrum can be computed explicitly in terms of Mathieu functions. Contrary to the traditional flat Möbius strip, our effective model contains a geometric ...[+]

35P20 ; 58J50 ; 81Q10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
How close is the Dirichlet-to-Neumann map to the square root of the corresponding boundary Laplacian? This question has been actively investigated in recent years. Somewhat surprisingly, a lot of techniques involved can be traced back to a newly rediscovered manuscript of Lars Hörmander from the 1950s. We present Hörmander's approach and its applications, with an emphasis on eigenvalue estimates and spectral asymptotics. The talk is based on a joint work with Alexandre Girouard, Mikhail Karpukhin and Michael Levitin[-]
How close is the Dirichlet-to-Neumann map to the square root of the corresponding boundary Laplacian? This question has been actively investigated in recent years. Somewhat surprisingly, a lot of techniques involved can be traced back to a newly rediscovered manuscript of Lars Hörmander from the 1950s. We present Hörmander's approach and its applications, with an emphasis on eigenvalue estimates and spectral asymptotics. The talk is based on a ...[+]

58J50 ; 35P20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show, using symmetrization techniques, that it is possible to prove a comparison principle (we are mainly focused on L1 comparison) between solutions to an elliptic partial differential equation on a smooth bounded set Ω with a rather general boundary condition, and solutions to a suitable related problem defined on a ball having the same volume as Ω. This includes for instance mixed problems.

35J05 ; 35B45 ; 35B06

Sélection Signaler une erreur