En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Di Nezza, Eleonora 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraicity of the metric tangent cones - Wang, Xiaowei (Auteur de la Conférence) | CIRM H

Post-edited

We proved that any K-semistable log Fano cone admits a special degeneration to a uniquely determined K-polystable log Fano cone. This confirms a conjecture of Donaldson-Sun stating that the metric tangent cone of any close point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. This is a joint work with Chi Li and Chenyang Xu.

14J45 ; 32Q15 ; 32Q20 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Moduli of algebraic varieties - Dervan, Ruadhai (Auteur de la Conférence) | CIRM H

Multi angle

One of the central problems in algebraic geometry is to form a reasonable (e.g. Hausdorff) moduli space of smooth polarised varieties. I will show how one can solve this problem using canonical Kähler metrics. This is joint work with Philipp Naumann.

14D20 ; 32Q15 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We develop apriori estimates for scalar curvature type equations on compact Kähler manifolds. As an application, we show that K-energy being proper with respect to $L^1$ geodesic distance implies the existence of constant scalar curvature Kähler metrics. This is joint work with Xiuxiong Chen.

53C55 ; 32Q20 ; 32Q15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Pluripotential Kähler-Ricci flows - Guedj, Vincent (Auteur de la Conférence) | CIRM H

Multi angle

We develop a parabolic pluripotential theory on compact Kähler manifolds, defining and studying weak solutions to degenerate parabolic complex Monge-Ampere equations. We provide a parabolic analogue of the celebrated Bedford-Taylor theory and apply it to the study of the Kähler-Ricci flow on varieties with log terminal singularities.

53C44 ; 32W20 ; 58J35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be interpreted as a generalisation of Yau's theorem (in this case the model potential is smooth).
As a corollary we obtain the existence of singular Kähler-Einstein metrics with prescribed singularities on general type and Calabi-Yau manifolds.
This is a joint work with Tamas Darvas and Chinh Lu.[-]
Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be ...[+]

32J27 ; 32Q15 ; 32Q20 ; 32W20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $f : X \to Y$ be a fibration between two projective manifolds. The Iitaka's conjecture predicts that the Kodaira dimension of $X$ is larger than the sum of the Kodaira dimension of $X$ and the Kodaira dimension of the generic fiber. We explain a proof of the Iitaka conjecture for algebraic fiber spaces over abelian varieties or projective surfaces.
It is a joint work with Mihai Paun.

14E30 ; 14K05 ; 14J10

Sélection Signaler une erreur