En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Ballet, Stéphane 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Good recursive towers - Bassa, Alp (Auteur de la Conférence) | CIRM H

Multi angle

Curves over finite fields of large genus with many rational points have been of interest for both theoretical reasons and for applications. In the past, various methods have been employed for the construction of such curves. One such method is by means of explicit recursive equations and will be the emphasis of this talk.The first explicit examples were found by Garcia–Stichtenoth over quadratic finite fields in 1995. Afterwards followed the discovery of good towers over cubic finite fields and finally all nonprime finite fields in 2013 (B.–Beelen–Garcia–Stichtenoth). The recursive nature of these towers makes them very special and in fact all good examples have been shown to have a modular interpretation of some sort. The questions of finding good recursive towers over prime fields resisted all attempts for several decades and lead to the common belief that such towers might not exist. In this talk I will try to give an overview of the landscape of explicit recursive towers and present a recently discovered tower over all finite fields including prime fields, except $F_{2}$ and $F_{3}$.
This is joint work with Christophe Ritzenthaler.[-]
Curves over finite fields of large genus with many rational points have been of interest for both theoretical reasons and for applications. In the past, various methods have been employed for the construction of such curves. One such method is by means of explicit recursive equations and will be the emphasis of this talk.The first explicit examples were found by Garcia–Stichtenoth over quadratic finite fields in 1995. Afterwards followed the ...[+]

11G20 ; 11T71 ; 14H25 ; 14G05 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In general the computation of the weight enumerator of a code is hard and even harder so for the coset leader weight enumerator. Generalized Reed Solomon codes are MDS, so their weight enumerators are known and its formulas depend only on the length and the dimension of the code. The coset leader weight enumerator of an MDS code depends on the geometry of the associated projective system of points. We consider the coset leader weight enumerator of $F_{q}$-ary Generalized Reed Solomon codes of length q + 1 of small dimensions, so its associated projective system is a normal rational curve. For instance in case of the $\left [ q+1,3,q-1 \right ]_{q}$ code where the associated projective system of points consists of the q + 1 points of a plane conic, the answer depends whether the characteristic is odd or even. If the associated projective system of points of a $\left [ q+1,4,q-2 \right ]_{q}$ code consists of the q + 1 points of a twisted cubic, the answer depends on the value of the characteristic modulo 6.[-]
In general the computation of the weight enumerator of a code is hard and even harder so for the coset leader weight enumerator. Generalized Reed Solomon codes are MDS, so their weight enumerators are known and its formulas depend only on the length and the dimension of the code. The coset leader weight enumerator of an MDS code depends on the geometry of the associated projective system of points. We consider the coset leader weight enumerator ...[+]

94B05 ; 94B27 ; 14H50 ; 05B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Ore polynomials and application to coding theory - Caruso, Xavier (Auteur de la Conférence) | CIRM H

Multi angle

In the 1930's, in the course of developing non-commutative algebra, Ore introduced a twisted version of polynomials in which the scalars do not commute with the variable. About fifty years later, Delsarte, Roth and Gabidulin realized (independently) that Ore polynomials could be used to define codes—nowadays called Gabidulin codes—exhibiting good properties with respect to the rank distance. More recently, Gabidulin codes have received much attention because of many promising applications to network coding, distributed storage and cryptography.
The first part of my talk will be devoted to review the classical construction of Gabidulin codes and present a recent extension due to Martinez-Penas and Boucher (independently), offering similar performances but allowing for transmitting much longer messages in one shot. I will then revisit Martinez-Penas' and Boucher's constructions and give to them a geometric flavour. Based on this, I will derive a geometric description of duals of these codes and finally speculate on the existence of more general geometric Gabidulin codes.[-]
In the 1930's, in the course of developing non-commutative algebra, Ore introduced a twisted version of polynomials in which the scalars do not commute with the variable. About fifty years later, Delsarte, Roth and Gabidulin realized (independently) that Ore polynomials could be used to define codes—nowadays called Gabidulin codes—exhibiting good properties with respect to the rank distance. More recently, Gabidulin codes have received much ...[+]

16S36 ; 94B60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In this talk I will describe a systematic investigation into congruences between the mod $p$ torsion modules of elliptic curves defined over $\mathbb{Q}$. For each such curve $E$ and prime $p$ the $p$-torsion $E[p]$ of $E$, is a 2-dimensional vector space over $\mathbb{F}_{p}$ which carries a Galois action of the absolute Galois group $G_{\mathbb{Q}}$. The structure of this $G_{\mathbb{Q}}$-module is very well understood, thanks to the work of J.-P. Serre and others. When we say the two curves $E$ and $E'$ are ”congruent” we mean that $E[p]$ and $E'[p]$ are isomorphic as $G_{\mathbb{Q}}$-modules. While such congruences are known to exist for all primes up to 17, the Frey-Mazur conjecture states that p is bounded: more precisely, that there exists $B$ > 0 such that if $p > B$ and $E[p]$ and $E'[p]$ are isomorphic then $E$ and $E'$ are isogenous. We report on work toward establishing such a bound for the elliptic curves in the LMFDB database. Secondly, we describe methods for determining whether or not a given isomorphism between $E[p]$ and $E'[p]$ is symplectic (preserves the Weil pairing) or antisymplectic, and report on the results of applying these methods to the curves in the database.
This is joint work with Nuno Freitas (Warwick).[-]
In this talk I will describe a systematic investigation into congruences between the mod $p$ torsion modules of elliptic curves defined over $\mathbb{Q}$. For each such curve $E$ and prime $p$ the $p$-torsion $E[p]$ of $E$, is a 2-dimensional vector space over $\mathbb{F}_{p}$ which carries a Galois action of the absolute Galois group $G_{\mathbb{Q}}$. The structure of this $G_{\mathbb{Q}}$-module is very well understood, thanks to the work of ...[+]

11G05 ; 14H52 ; 11A07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gilles Lachaud: friend and mathematician - Tsfasman, Michael (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Isolated points on modular curves - Viray, Bianca (Auteur de la Conférence) | CIRM H

Multi angle

Faltings's theorem on rational points on subvarieties of abelian varieties can be used to show that al but finitely many algebraic points on a curve arise in families parametrized by $\mathbb{P}^{1}$ or positive rank abelian varieties, we call these finitely many exceptions isolated points. We study how isolated points behave under morphisms and then specialize to the case of modular curves. We show that isolated points on $X_{1}(n)$ push down to isolated points on aj only on the $j$-invariant of the isolated point.
This is joint work with A. Bourdon, O. Ejder, Y. Liu, and F. Odumodu.[-]
Faltings's theorem on rational points on subvarieties of abelian varieties can be used to show that al but finitely many algebraic points on a curve arise in families parametrized by $\mathbb{P}^{1}$ or positive rank abelian varieties, we call these finitely many exceptions isolated points. We study how isolated points behave under morphisms and then specialize to the case of modular curves. We show that isolated points on $X_{1}(n)$ push down ...[+]

11G05 ; 11G18 ; 11G30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the work and persona of Gilles Lachaud - Ghorpade, Sudhir (Auteur de la Conférence) | CIRM H

Multi angle

I will give an account of some aspects of the mathematical work of Gilles Lachaud, especially the work in which I was associated with him. This will be mixed with some personal reminiscences.

11G25 ; 11T71 ; 11G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For a long time people have been interested in finding and constructing curves over finite fields with many points. For genus 1 and genus 2 curves, we know how to construct curves over any finite field of defect less than 1 or 3 (respectively), i.e. with a number of points at distance at most 1 or 3 to the upper bound given by the Hasse-Weil-Serre bound. The case of genus 3 is still open after more than 40 years of research. In this talk I will take a different approach based on the random matrix theory of Katz-Sarnak, that describe the distribution of the number of points, to prove the existence, for all $\epsilon>0$, of curves of genus $g$ over $\mathbb{F}_{q}$ with more than $1+q+(2 g-\epsilon) \sqrt{q}$ points for $q$ big enough. I will also discuss some explicit constructions as well as some details about the asymmetric of the distribution of the trace of the Frobenius for curves of genus 3 .This is a joint work with J. Bergström, E. Howe and C. Ritzenthaler.[-]
For a long time people have been interested in finding and constructing curves over finite fields with many points. For genus 1 and genus 2 curves, we know how to construct curves over any finite field of defect less than 1 or 3 (respectively), i.e. with a number of points at distance at most 1 or 3 to the upper bound given by the Hasse-Weil-Serre bound. The case of genus 3 is still open after more than 40 years of research. In this talk I will ...[+]

11G20 ; 14H25 ; 14H30 ; 11R45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Algebraic curves over a finite field $\mathbb{F}_{q}$ and their function fields have been a source of great fascination for number theorists and geometers alike, ever since the seminal work of Hasse and Weil in the 1930s and 1940s. Many important and fruitful ideas have arisen out of this area, where number theory and algebraic geometry meet. For a long time, the study of algebraic curves and their function fields was the province of pure mathematicians. But then, in a series of three papers in the period 1977-1982, Goppa found important applications of algebraic curves over finite fields to coding theory. The key point of Goppa's construction is that the code parameters are essentially expressed in terms of arithmetic and geometric features of the curve, such as the number $N_{q}$ of $\mathbb{F}_{q}$-rational points and the genus $g$. Goppa codes with good parameters are constructed from curves with large $N_{q}$ with respect to their genus $g$. Given a smooth projective, algebraic curve of genus $g$ over $\mathbb{F}_{q}$, an upper bound for $N_{q}$ is a corollary to the celebrated Hasse-Weil Theorem,$$N_{q} \leq q+1+2 g \sqrt{q} .$$Curves attaining this bound are called $\mathbb{F}_{q}$-maximal. The Hermitian curve $\mathcal{H}$, that is, the plane projective curve with equation$$X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}=0,$$is a key example of an $\mathbb{F}_{q}$-maximal curve, as it is the unique curve, up to isomorphism, attaining the maximum possible genus $\sqrt{q}(\sqrt{q}-1) / 2$ of an $\mathbb{F}_{q^{-}}$ maximal curve. Other important examples of maximal curves are the Suzuki and the Ree curves. It is a result commonly attributed to Serre that any curve which is $\mathbb{F}_{q}$-covered by an $\mathbb{F}_{q}$-maximal curve is still $\mathbb{F}_{q}$-maximal. In particular, quotient curves of $\mathbb{F}_{q}$-maximal curves are $\mathbb{F}_{q}$-maximal. Many examples of $\mathbb{F}_{q}$-maximal curves have been constructed as quotient curves $\mathcal{X} / G$ of the Hermitian/Ree/Suzuki curve $\mathcal{X}$ under the action of subgroups $G$ of the full automorphism group of $\mathcal{X}$. It is a challenging problem to construct maximal curves that cannot be obtained in this way for some $G$. In this talk, we will describe our main contributions to both the theory of maximal curves over finite fields and to applications of algebraic curves with many points in coding theory. In particular, the following three topics will be discussed:
1. Construction of maximal curves
2. Weierstrass semigroups and points on maximal curves;
3. Algebraic curves with many rational points and coding theory.[-]
Algebraic curves over a finite field $\mathbb{F}_{q}$ and their function fields have been a source of great fascination for number theorists and geometers alike, ever since the seminal work of Hasse and Weil in the 1930s and 1940s. Many important and fruitful ideas have arisen out of this area, where number theory and algebraic geometry meet. For a long time, the study of algebraic curves and their function fields was the province of pure ...[+]

11G20 ; 14H25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An overview of algebraic geometry codes from surfaces - Nardi, Jade (Auteur de la Conférence) | CIRM H

Multi angle

In the field of coding theory, Goppa's construction of error-correcting codes on algebraic curves has been widely studied and applied. As noticed by M. Tsfasman and S. Vlădut¸, this construction can be generalized to any algebraic variety. This talk aims to shed light on the case of surfaces and expand the understanding of Goppa's construction beyond curves. After discussing the motivations for considering codes from higher–dimensional varieties, we will compare and contrast codes from curves and codes from surfaces, notably regarding the computation of their parameters, their local properties, and asymptotic constructions.[-]
In the field of coding theory, Goppa's construction of error-correcting codes on algebraic curves has been widely studied and applied. As noticed by M. Tsfasman and S. Vlădut¸, this construction can be generalized to any algebraic variety. This talk aims to shed light on the case of surfaces and expand the understanding of Goppa's construction beyond curves. After discussing the motivations for considering codes from higher–dimensional ...[+]

11T71 ; 14G50 ; 94B05

Sélection Signaler une erreur