En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Curien, Nicolas 30 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer.
In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The fact that there exists a combinatorial critical value for this model has been initially established in the physics literature by Kazakov and was rederived by combinatorial methods by Bousquet-Mélou and Schaeffer, and Bouttier, Di Francesco and Guitter.
Here, we give geometric evidence of that this model undergoes a phase transition by studying the volume and perimeter of its monochromatic clusters. In particular, we establish that, when nu is critical or subcritical, the cluster of the root is finite almost surely, and is infinite with positive probability for nu supercritical.[-]
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer.
In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The ...[+]

05A15 ; 05A16 ; 05C12 ; 05C30 ; 60C05 ; 60D05 ; 60K35 ; 82B44

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Consider a large random permutation satisfying some constraints or biased according to some statistics. What does it look like? In this seminar we make sense of this question introducing the notion of permuton. Permuton convergence has been established for several models of random permutations in various works: we give an overview of some of these results, mainly focusing on the case of pattern-avoiding permutations.
The main goal of the talk is to present a new family of universal limiting permutons, called skew Brownian permuton. This family includes (as particular cases) some already studied limiting permutons, such as the biased Brownian separable permuton and the Baxter permuton. We also show that some natural families of random constrained permutations converge to some new instances of the skew Brownian permuton.
The construction of these new limiting objects will lead us to investigate an intriguing connection with some perturbed versions of the Tanaka SDE and the SDEs encoding skew Brownian motions. We finally explain how it is possible to construct these new limiting permutons directly from a Liouville quantum gravity decorated with two SLE curves. Building on the latter connection, we compute the density of the intensity measure of the Baxter permuton.[-]
Consider a large random permutation satisfying some constraints or biased according to some statistics. What does it look like? In this seminar we make sense of this question introducing the notion of permuton. Permuton convergence has been established for several models of random permutations in various works: we give an overview of some of these results, mainly focusing on the case of pattern-avoiding permutations.
The main goal of the talk is ...[+]

60D05 ; 60H10 ; 60G57

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The main purpose of this work is to provide a framework for proving that, given a family of random maps known to converge in the Gromov--Hausdorff sense, then some (suitable) conditional families of random maps converge to the same limit. As a proof of concept, we show that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence $(p_n)$ of even positive integers with $p_n\sim2\alpha \sqrt{2n}$ for some $\alpha\in(0,\infty)$. Then, for the Gromov--Hausdorff topology, a quadrangulation with a simple boundary uniformly sampled among those with $n$ inner faces and boundary length $p_n$ weakly converges, in the usual scaling $n^{-1/4}$, toward the Brownian disk of perimeter $3\alpha$.[-]
The main purpose of this work is to provide a framework for proving that, given a family of random maps known to converge in the Gromov--Hausdorff sense, then some (suitable) conditional families of random maps converge to the same limit. As a proof of concept, we show that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence $(p_n)$ of even positive integers with $p_n\sim2\alpha \sqrt{2n}$ for ...[+]

60F17 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bijections for maps on non-oriented surfaces - Dołęga, Maciej (Auteur de la Conférence) | CIRM H

Multi angle

Bijections between planar maps and tree-like structures have been proven to play a crucial role in understanding the geometry of large random planar maps. Perhaps the most popular (and useful) bijections fit into two categories: bijections between maps and labeled trees and bijections between maps and blossoming trees. They were popularized in the late nineties in the important contribution of Schaeffer and they have been widely developed since then. It is natural to ask whether these bijections still hold when the underlying surface is no longer the sphere but any two-dimensional compact manifold? In this case trees are replaced by maps on a given surface with only one face and while the construction of Schaefer of the labeled-type bijection works independently on genus (but crucially depending on the assumption of orientability) his construction of the blossoming-type bijection was known only in the planar case. We will discuss a (recent?) development of these bijections that extends them to all compact two-dimensional manifolds. I will quickly review my previous joint work with Chapuy and its extension due to Bettinelli which treats the labeled-type bijection and will focus on a more recent work joint with Lepoutre which extends the blossoming-type bijection to non-oriented surfaces.[-]
Bijections between planar maps and tree-like structures have been proven to play a crucial role in understanding the geometry of large random planar maps. Perhaps the most popular (and useful) bijections fit into two categories: bijections between maps and labeled trees and bijections between maps and blossoming trees. They were popularized in the late nineties in the important contribution of Schaeffer and they have been widely developed since ...[+]

05C30 ; 05C10 ; 05C12 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The scaling limit of random planar maps with large faces - Riera, Armand (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we consider large Boltzmann stable planar maps of index $\alpha\in (1,2)$, We will show that this model converges in the scaling limit towards a random compact metric space that we construct explicitly. We will also present some results concerning the topology and the geodesics of the scaling limit. This talk is based on a joint work with Nicolas Curien and Grégory Miermont.

05C80 ; 60F17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will provide a brief and gentle introduction to Witten's conjecture, which predicts that the generating series of certain intersection numbers on the moduli space of curves is a tau function of the KdV integrable hierarchy, as a motivation for r-spin Witten's conjecture that concerns much more complicated geometric objects and specialises to the original conjecture for r=2. The r=2 conjecture was proved for the first time by Kontsevich making use of maps arising from a cubic hermitian matrix model with an external field. Together with R. Belliard, S. Charbonnier and B. Eynard, we studied the combinatorial model that generalises Kontsevich maps to higher r. Making use of some auxiliary models we manage to find a Tutte-like recursion for these maps and to massage it into a topological recursion. We also show a relation between a particular case of our maps and the r-spin intersection numbers, which allows us to prove that these satisfy topological recursion. Finally, I will explain how, in joint work with G. Borot and S. Charbonnier, we relate another specialisation of our models to fully simple maps, and how this identification helps us prove that fully simple maps satisfy topological recursion for the spectral curve in which one exchanges x and y from the spectral curve for ordinary maps. This solved a conjecture from G. Borot and myself from '17.[-]
In this talk I will provide a brief and gentle introduction to Witten's conjecture, which predicts that the generating series of certain intersection numbers on the moduli space of curves is a tau function of the KdV integrable hierarchy, as a motivation for r-spin Witten's conjecture that concerns much more complicated geometric objects and specialises to the original conjecture for r=2. The r=2 conjecture was proved for the first time by ...[+]

05C30 ; 05A15 ; 14N35 ; 37K10 ; 14H70 ; 14N10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will talk about a transformation involving double monotone Hurwitz numbers, which has several interpretations: transformation from maps to fully simple maps, passing from cumulants to free cumulants in free probability, action of an operator in the Fock space, symplectic exchange in topological recursion. In combination with recent work of Bychkov, Dunin-Barkowski, Kazarian and Shadrin, we deduce functional relations relating the generating series of higher order cumulants and free cumulants. This solves a 15-year old problem posed by Collins, Mingo, Sniady and Speicher (the first order is Voiculescu R-transform). This leads us to a general theory of 'surfaced' freeness, which captures the all order asymptotic expansions in unitary invariant random matrix models, which can be described both from the combinatorial and the analytic perspective.
Based on https://arxiv.org/abs/2112.12184 with Séverin Charbonnier, Elba Garcia-Failde, Felix Leid and Sergey Shadrin.[-]
I will talk about a transformation involving double monotone Hurwitz numbers, which has several interpretations: transformation from maps to fully simple maps, passing from cumulants to free cumulants in free probability, action of an operator in the Fock space, symplectic exchange in topological recursion. In combination with recent work of Bychkov, Dunin-Barkowski, Kazarian and Shadrin, we deduce functional relations relating the generating ...[+]

46L54 ; 15B52 ; 16R60 ; 06A07 ; 05A18

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Liouville CFT is a conformal field theory developped in the early 80s in physics, it describes random surfaces and more precisely random Riemannian metrics on surfaces. We will explain, using the Gaussian multiplicative chaos, how to associate to each surface $\Sigma$ with boundary an amplitude, which is an $L^2$ function on the space of fields on the boundary of $\Sigma$ (i.e. the Sobolev space $H^{-s}(\mathbb{S}^1)^b$ equipped with a Gaussian measure, if the boundary of $\Sigma$ has $b$ connected components), and then how these amplitudes compose under gluing of surfaces along their boundary (the so-called Segal axioms).
This allows us to give formulas for all partition and correlation functions of the Liouville CFT in terms of $3$ point correlation functions on the Riemann sphere (DOZZ formula) and the conformal blocks, which are holomorphic functions of the moduli of the space of Riemann surfaces with marked points. This gives a link between the probabilistic approach and the representation theory approach for CFTs, and a mathematical construction and resolution of an important non-rational conformal field theory.
This is joint work with A. Kupiainen, R. Rhodes and V. Vargas. [-]
Liouville CFT is a conformal field theory developped in the early 80s in physics, it describes random surfaces and more precisely random Riemannian metrics on surfaces. We will explain, using the Gaussian multiplicative chaos, how to associate to each surface $\Sigma$ with boundary an amplitude, which is an $L^2$ function on the space of fields on the boundary of $\Sigma$ (i.e. the Sobolev space $H^{-s}(\mathbb{S}^1)^b$ equipped with a Gaussian ...[+]

60D05 ; 81T80 ; 17B69 ; 81R10 ; 17B68

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Height coupled trees - Ünel, Meltem (Auteur de la Conférence) | CIRM H

Multi angle

We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ from a single spine phase to a multi-spine phase. Correspondingly, there is a transition in the volume growth rate of balls around the root as a function of radius from linear growth for $\mu<0$ to the familiar quadratic growth at $\mu=0$ and to cubic growth for $\mu> 0$.[-]
We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ ...[+]

05C05 ; 60J75 ; 60B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will discuss a bijection between the moduli space of genus-0 hyperbolic surfaces with a distinguished cusp and certain labeled trees, analogous to known tree bijections in the combinatorics of planar maps. The Weil-Petersson measure on the moduli space takes a simple form at the level of the trees, and gives a bijective interpretation to the coefficients in the Weil-Petersson volume polynomials. The labels on the trees give precise information about geodesic distances in the surface, which can be used to study the geometry of random hyperbolic surfaces sampled from the Weil-Petersson measure. In particular, the random genus-0 hyperbolic surface with $n$ cusps is shown to converge as a metric space, after rescaling by $n^{-1/4}$, to the Brownian sphere.This talk is based on work with Nicolas Curien and with Thomas Meeusen and Bart Zonneveld.[-]
In this talk I will discuss a bijection between the moduli space of genus-0 hyperbolic surfaces with a distinguished cusp and certain labeled trees, analogous to known tree bijections in the combinatorics of planar maps. The Weil-Petersson measure on the moduli space takes a simple form at the level of the trees, and gives a bijective interpretation to the coefficients in the Weil-Petersson volume polynomials. The labels on the trees give ...[+]

Sélection Signaler une erreur