En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Search by event 1672 5 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Weighted distances in scale free random graphs - Komjathy, Julia (Author of the conference) | CIRM H

Multi angle

In this talk I will review the recent developments on weighted distances in scale free random graphs as well as highlight key techniques used in the proofs. We consider graph models where the degree distribution follows a power-law such that the empirical variance of the degrees is infinite, such as the configuration model, geometric inhomogeneous random graphs, or scale free percolation. Once the graph is created according to the model definition, we assign i.i.d. positive edge weights to existing edges, and we are interested in the proper scaling and asymptotic distribution of weighted distances.
In the infinite variance degree regime, a dichotomy can be observed in all these graph models: the edge weight distributions form two classes, explosive vs conservative weight distributions. When a distribution falls into the explosive class, typical distances converge in distribution to proper random variables. While, when a distribution falls into the conservative class, distances tend to infinity with the model size, according to a formula that captures the doubly-logarithmic graph distances as well as the precise behaviour of the distribution of edge-weights around the origin. An integrability condition decides into which class a given distribution falls.
This is joint work with Adriaans, Baroni, van der Hofstad, and Lodewijks.[-]
In this talk I will review the recent developments on weighted distances in scale free random graphs as well as highlight key techniques used in the proofs. We consider graph models where the degree distribution follows a power-law such that the empirical variance of the degrees is infinite, such as the configuration model, geometric inhomogeneous random graphs, or scale free percolation. Once the graph is created according to the model ...[+]

05C80 ; 90B15 ; 60C05 ; 60D05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a simple stochastic model for the spread of a disease caused by two virus strains in a closed homogeneously mixing population of size N. In our model, the spread of each strain is described by the stochastic logistic SIS epidemic process in the absence of the other strain, and we assume that there is perfect cross-immunity between the two virus strains, that is, individuals infected by one strain are temporarily immune to re-infections and infections by the other strain. For the case where one strain has a strictly larger basic reproductive ratio than the other, and the stronger strain on its own is supercritical (that is, its basic reproductive ratio is larger than 1), we derive precise asymptotic results for the distribution of the time when the weaker strain disappears from the population, that is, its extinction time. We further consider what happens when the difference between the two reproductive ratios may tend to 0.
This is joint work with Fabio Lopes.[-]
We consider a simple stochastic model for the spread of a disease caused by two virus strains in a closed homogeneously mixing population of size N. In our model, the spread of each strain is described by the stochastic logistic SIS epidemic process in the absence of the other strain, and we assume that there is perfect cross-immunity between the two virus strains, that is, individuals infected by one strain are temporarily immune to re...[+]

60J27 ; 92D30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Bootstrap percolation on Erdos-Renyi graphs - Angel, Omer (Author of the conference) | CIRM H

Post-edited

We consider bootstrap percolation on the Erdos-Renyi graph: given an initial infected set, a vertex becomes infected if it has at least $r$ infected neighbours. The graph is susceptible if there exists an initial set of size $r$ that infects the whole graph. We identify the critical threshold for susceptibility. We also analyse Bollobas's related graph-bootstrap percolation model.
Joint with Brett Kolesnik.

05C80 ; 60K35 ; 60J85 ; 82B26 ; 82B43

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interlacements and the uniform spanning forest - Hutchcroft, Tom (Author of the conference) | CIRM H

Multi angle

The Aldous-Broder algorithm allows one to sample the uniform spanning tree of a finite graph as the set of first-entry edges of a simple random walk. In this talk, I will discuss how this can be extended to infinite transient graphs by replacing the random walk with the random interlacement process. I will then outline how this new sampling algorithm can be used to compute critical exponents for the uniform spanning forest of $Z^d$.

60D05 ; 05C05 ; 20F65

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Frozen and near-critical percolation - van den Berg, Jacob (Author of the conference) | CIRM H

Multi angle

Motivated by solgel transitions, David Aldous (2000) introduced and analysed a fascinating dynamic percolation model on a tree where clusters stop growing ('freeze') as soon as they become infinite.
In this talk I will discuss recent (and ongoing) work, with Demeter Kiss and Pierre Nolin, on processes of similar flavour on planar lattices. We focus on the problem whether or not the giant (i.e. 'frozen') clusters occupy a negligible fraction of space. Accurate results for near-critical percolation play an important role in the solution of this problem.
I will also present a version of the model which can be interpreted as a sensor/communication network.[-]
Motivated by solgel transitions, David Aldous (2000) introduced and analysed a fascinating dynamic percolation model on a tree where clusters stop growing ('freeze') as soon as they become infinite.
In this talk I will discuss recent (and ongoing) work, with Demeter Kiss and Pierre Nolin, on processes of similar flavour on planar lattices. We focus on the problem whether or not the giant (i.e. 'frozen') clusters occupy a negligible fraction of ...[+]

60K35 ; 82B43

Bookmarks Report an error