En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Wasserstein convergence of penalized Markov processes

Bookmarks Report an error
Multi angle
Authors : Champagnat, Nicolas (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We consider a Markov process living in some space E, and killed (penalized) at a rate depending on its position. In the last decade, several conditions have been given ensuring that the law of the process conditioned on survival converges to a quasi-stationary distribution exponentially fast in total variation distance. In this talk, we will present very simple examples of penalized Markov process whose conditional law cannot converge in total variation, and we will give a sufficient condition implying contraction and convergence of the conditional law in Wasserstein distance to a unique quasi-stationary distribution. Our criterion also imply a first-order expansion of the probability of survival, the ergodicity in Wasserstein distance of the Q-process, i.e. the process conditioned to never be killed, and quasi-ergodicity in Wasserstein distance. We then apply this criterion to several examples, including Bernoulli convolutions and piecewise deterministic Markov processes of the form of switched dynamical systems, for which convergence in total variation is not possible.
This is joint work with Edouard Strickler (CNRS, Université de Lorraine) and Denis Villemonais (Université de Lorraine).

Keywords : Quasi-stationary distribution; penalized Markov process; Feynman-Kac semi-group; Wasserstein distance; exponential ergodicity; Q-process; quasi-ergodic distribution

MSC Codes :
37A25 - Ergodicity, mixing, rates of mixing
60B10 - Convergence of probability measures
60J25 - Continuous-time Markov processes on general state spaces

Additional resources :
https://www.cirm-math.fr/RepOrga/2390/Slides/Nicolas_Champagnat.pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 27/09/2023
    Conference Date : 05/09/2023
    Subseries : Research talks
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:45:25
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-05_Champagnat.mp4

Information on the Event

Event Title : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Event Organizers : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2390.html

Citation Data

DOI : 10.24350/CIRM.V.20087903
Cite this video as: Champagnat, Nicolas (2023). Wasserstein convergence of penalized Markov processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20087903
URI : http://dx.doi.org/10.24350/CIRM.V.20087903

See Also

Bibliography

  • CHAMPAGNAT, Nicolas, STRICKLER, Edouard, et VILLEMONAIS, Denis. Uniform Wasserstein convergence of penalized Markov processes. arXiv preprint arXiv:2306.16051, 2023. - https://doi.org/10.48550/arXiv.2306.16051



Imagette Video

Bookmarks Report an error