En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Wasserstein convergence of penalized Markov processes

Sélection Signaler une erreur
Multi angle
Auteurs : Champagnat, Nicolas (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : We consider a Markov process living in some space E, and killed (penalized) at a rate depending on its position. In the last decade, several conditions have been given ensuring that the law of the process conditioned on survival converges to a quasi-stationary distribution exponentially fast in total variation distance. In this talk, we will present very simple examples of penalized Markov process whose conditional law cannot converge in total variation, and we will give a sufficient condition implying contraction and convergence of the conditional law in Wasserstein distance to a unique quasi-stationary distribution. Our criterion also imply a first-order expansion of the probability of survival, the ergodicity in Wasserstein distance of the Q-process, i.e. the process conditioned to never be killed, and quasi-ergodicity in Wasserstein distance. We then apply this criterion to several examples, including Bernoulli convolutions and piecewise deterministic Markov processes of the form of switched dynamical systems, for which convergence in total variation is not possible.
This is joint work with Edouard Strickler (CNRS, Université de Lorraine) and Denis Villemonais (Université de Lorraine).

Mots-Clés : Quasi-stationary distribution; penalized Markov process; Feynman-Kac semi-group; Wasserstein distance; exponential ergodicity; Q-process; quasi-ergodic distribution

Codes MSC :
37A25 - Ergodicity, mixing, rates of mixing
60B10 - Convergence of probability measures
60J25 - Continuous-time Markov processes on general state spaces

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2390/Slides/Nicolas_Champagnat.pdf

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de Publication : 27/09/2023
    Date de Captation : 05/09/2023
    Sous Collection : Research talks
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:45:25
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-05_Champagnat.mp4

Informations sur la Rencontre

Nom de la Rencontre : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Organisateurs de la Rencontre : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2390.html

Données de citation

DOI : 10.24350/CIRM.V.20087903
Citer cette vidéo: Champagnat, Nicolas (2023). Wasserstein convergence of penalized Markov processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20087903
URI : http://dx.doi.org/10.24350/CIRM.V.20087903

Voir Aussi

Bibliographie

  • CHAMPAGNAT, Nicolas, STRICKLER, Edouard, et VILLEMONAIS, Denis. Uniform Wasserstein convergence of penalized Markov processes. arXiv preprint arXiv:2306.16051, 2023. - https://doi.org/10.48550/arXiv.2306.16051



Imagette Video

Sélection Signaler une erreur