En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Using ergodic theory to study the cohomology of diffeomorphism groups

Bookmarks Report an error
Multi angle
Authors : Monod, Nicolas (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Recent work with Nariman and with Fournier-Facio-Nariman determines the bounded cohomology of some familiar diffeomorphism groups. The results differ from what is known or expected in ordinary cohomology. Another way to phrase this is that certain classical characteristic classes are unbounded. The goal of this lecture is to show how some ideas from ergodic theory are useful to prove such cohomological results.

MSC Codes :

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 10/01/2025
    Conference Date : 12/12/2024
    Subseries : Research talks
    arXiv category : Group Theory ; Algebraic Topology ; Geometric Topology
    Mathematical Area(s) : Algebra ; Dynamical Systems & ODE ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:02
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-12_Monod.mp4

Information on the Event

Event Title : Foliations and Diffeomorphism Groups / Feuilletages et Groupes de Difféomorphisme
Event Organizers : Eynard-Bontemps, Hélène ; Meigniez, Gaël ; Nariman, Sam ; Yazdi, Mehdi
Dates : 09/12/2024 - 13/12/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3082.html

Citation Data

DOI : 10.24350/CIRM.V.20275403
Cite this video as: Monod, Nicolas (2024). Using ergodic theory to study the cohomology of diffeomorphism groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20275403
URI : http://dx.doi.org/10.24350/CIRM.V.20275403

See Also

Bibliography

  • MONOD, Nicolas. Lamplighters and the bounded cohomology of Thompson's group. Geometric and Functional Analysis, 2022, vol. 32, no 3, p. 662-675. - https://doi.org/10.1007/s00039-022-00604-9

  • MONOD, Nicolas et NARIMAN, Sam. Bounded and unbounded cohomology of homeomorphism and diffeomorphism groups. Inventiones mathematicae, 2023, vol. 232, no 3, p. 1439-1475. - https://doi.org/10.1007/s00222-023-01181-w

  • FOURNIER-FACIO, Francesco, MONOD, Nicolas, NARIMAN, Sam, et al. The bounded cohomology of transformation groups of Euclidean spaces and discs. arXiv preprint arXiv:2405.20395, 2024. - https://doi.org/10.48550/arXiv.2405.20395



Imagette Video

Bookmarks Report an error