En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11R29 11 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The number $F(h)$ of imaginary quadratic fields with class number $h$ is of classical interest: Gauss' class number problem asks for a determination of those fields counted by $F(h)$. The unconditional computation of $F(h)$ for $h \le 100$ was completed by M. Watkins, and K. Soundararajan has more recently made conjectures about the order of magnitude of $F(h)$ as $h \to \infty$ and determined its average order.
For odd $h$ we refine Soundararajan's conjecture to a conjectural asymptotic formula and also consider the subtler problem of determining the number $F(G)$ of imaginary quadratic fields with class group isomorphic to a given finite abelian group $G$.
Using Watkins' tables, one can show that some abelian groups do not occur as the class group of any imaginary quadratic field (for instance $(\mathbb{Z}/3\mathbb{Z})^3$ does not). This observation is explained in part by the Cohen-Lenstra heuristics, which have often been used to study the distribution of the p-part of an imaginary quadratic class group. We combine the Cohen-Lenstra heuristics with a refinement of Soundararajan's conjecture to make precise predictions about the asymptotic nature of the entire imaginary quadratic class group, in particular addressing the above-mentioned phenomenon of “missing” class groups, for families of $p$-groups as $p$ tends to infinity. For instance, it appears that no groups of the form $(\mathbb{Z}/p\mathbb{Z})^3$ and $p$ prime occurs as a class group of a quadratic imaginary field.
Conditionally on the Generalized Riemann Hypothesis, we extend Watkins' data, tabulating $F(h)$ for odd $h \le 10^6$ and $F(G)$ for $G$ a $p$-group of odd order with $|G| \le 10^6$. (To do this, we examine the class numbers of all negative prime fundamental discriminants $-q$, for $q \le 1.1881 \cdot 10^{15}.$) The numerical evidence matches quite well with our conjectures.
This is joint work with S. Holmin, N. Jones, C. McLeman, and K. Petersen.[-]
The number $F(h)$ of imaginary quadratic fields with class number $h$ is of classical interest: Gauss' class number problem asks for a determination of those fields counted by $F(h)$. The unconditional computation of $F(h)$ for $h \le 100$ was completed by M. Watkins, and K. Soundararajan has more recently made conjectures about the order of magnitude of $F(h)$ as $h \to \infty$ and determined its average order.
For odd $h$ we refine So...[+]

11R11 ; 11R29

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Congruent number problem and BSD conjecture - Zhang, Shou-Wu (Author of the conference) | CIRM H

Multi angle

A thousand years old problem is to determine when a square free integer $n$ is a congruent number ,i,e, the areas of right angled triangles with sides of rational lengths. This problem has a some beautiful connection with the BSD conjecture for elliptic curves $E_n : ny^2 = x^3 - x$. In fact by BSD, all $n= 5, 6, 7$ mod $8$ should be congruent numbers, and most of $n=1, 2, 3$ mod $8$ should not be congruent numbers. Recently, Alex Smith has proved that at least 41.9% of $n=1,2,3$ satisfy (refined) BSD in rank $0$, and at least 55.9% of $n=5,6,7$ mod $8$ satisfy (weak) BSD in rank $1$. This implies in particular that at last 41.9% of $n=1,2,3$ mod $8$ are not congruent numbers, and 55.9% of $n=5, 6, 7$ mod $8$ are congruent numbers. I will explain the ingredients used in Smith's proof: including the classical work of Heath-Brown and Monsky on the distribution F_2 rank of Selmer group of E_n, the complex formula for central value and derivative of L-fucntions of Waldspurger and Gross-Zagier and their extension by Yuan-Zhang-Zhang, and their mod 2 version by Tian-Yuan-Zhang.[-]
A thousand years old problem is to determine when a square free integer $n$ is a congruent number ,i,e, the areas of right angled triangles with sides of rational lengths. This problem has a some beautiful connection with the BSD conjecture for elliptic curves $E_n : ny^2 = x^3 - x$. In fact by BSD, all $n= 5, 6, 7$ mod $8$ should be congruent numbers, and most of $n=1, 2, 3$ mod $8$ should not be congruent numbers. Recently, Alex Smith has ...[+]

11G40 ; 11D25 ; 11R29

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We present heuristics that suggest that there is a uniform bound on the rank of $E(\mathbb{Q})$ as $E$ varies over all elliptic curves over $\mathbb{Q}$. This is joint work with Jennifer Park, John Voight, and Melanie Matchett Wood.

11R29 ; 11G40 ; 11G05 ; 14H52 ; 11R45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error