En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14J70 10 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bertini theorems in arithmetic geometry - Charles, François (Author of the conference) | CIRM H

Multi angle

The classical Bertini irreducibility theorem states that if $X$ is an irreducible projective variety of dimension at least 2 over an infinite field, then $X$ has an irreducible hyperplane section. The proof does not apply in arithmetic situations, where one wants to work over the integers or a finite fields. I will discuss how to amend the theorem in these cases (joint with Bjorn Poonen over finite fields).

14N05 ; 14J70 ; 14G15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraic cycles on varieties over finite fields - Pirutka, Alena (Author of the conference) | CIRM H

Post-edited

Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to understand. One then construct maps called "cycle class maps" from Chow groups to several cohomological theories.
In this talk, we focus on the case of a variety $X$ over a finite field. In this case, Tate conjecture claims the surjectivity of the cycle class map with rational coefficients; this conjecture is still widely open. In case of integral coefficients, we speak about the integral version of the conjecture and we know several counterexamples for the surjectivity. In this talk, we present a survey of some well-known results on this subject and discuss other properties of algebraic cycles which are either proved or expected to be true. We also discuss several involved methods.[-]
Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to ...[+]

14C25 ; 14G15 ; 14J70 ; 14C15 ; 14H05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Stable rationality - Lecture 1 - Pirutka, Alena (Author of the conference) | CIRM H

Post-edited

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stable rationality - Lecture 3 - Pirutka, Alena (Author of the conference) | CIRM H

Multi angle

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).[-]
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...[+]

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).[-]
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...[+]

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).[-]
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...[+]

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gonality and zero-cycles of abelian varieties - Voisin, Claire (Author of the conference) | CIRM H

Multi angle

The gonality of a variety is defined as the minimal gonality of curve sitting in the variety. We prove that the gonality of a very general abelian variety of dimension $g$ goes to infinity with $g$. We use for this a (straightforward) generalization of a method due to Pirola that we will describe. The method also leads to a number of other applications concerning $0$-cycles modulo rational equivalence on very general abelian varieties.

14C15 ; 14C25 ; 14J70 ; 14J28 ; 14H51 ; 14Kxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that over any uncountable field of characteristic different from two, a very general hypersurface of dimension $n > 2$ and degree at least $log_2 (n) + 2$ is not stably rational. This significantly improves earlier results of Kollár and Totaro. As a byproduct of our proof, we obtain new counterexamples to the integral Hodge conjecture, answering a question of Voisin and Colliot-Thélène – Voisin.

14J70 ; 14E08 ; 14M20 ; 14C30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An entire curve on a complex variety is a holomorphic map from the complex numbers to the variety. We discuss two well-known conjectures on entire curves on very general high-degree hypersurfaces $X$ in $\mathbb{P}^n$: the Green–Griffiths–Lang Conjecture, which says that the entire curves lie in a proper subvariety of $X$, and the Kobayashi Conjecture, which says that X contains no entire curves.
We prove that (a slightly strengthened version of) the Green–Griffiths–Lang Conjecture in dimension $2n$ implies the Kobayashi Conjecture in dimension $n$. The technique has already led to improved bounds for the Kobayashi Conjecture. This is joint work with David Yang.[-]
An entire curve on a complex variety is a holomorphic map from the complex numbers to the variety. We discuss two well-known conjectures on entire curves on very general high-degree hypersurfaces $X$ in $\mathbb{P}^n$: the Green–Griffiths–Lang Conjecture, which says that the entire curves lie in a proper subvariety of $X$, and the Kobayashi Conjecture, which says that X contains no entire curves.
We prove that (a slightly strengthened version ...[+]

32Q45 ; 14M10 ; 14J70 ; 14M07

Bookmarks Report an error