En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14C25 10 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Twistor spaces of K3 surfaces are non-Kähler compact complex manifolds which play a fundamental role in the moduli theory of K3 surfaces. They come equipped with a holomorphic submersion to the complex projective line which under the period map corresponds to a twistor line in the K3-period domain. In this talk I will explain how one can view a twistor line as a certain base point in the linear cycle space of the period domain. Then, based on joint work in progress with Daniel Greb, Tim Kirschner and Martin Schwald I will present new results concerning the deformations of twistor spaces of K3 surfaces and their relation to the cycle space of the period domain.[-]
Twistor spaces of K3 surfaces are non-Kähler compact complex manifolds which play a fundamental role in the moduli theory of K3 surfaces. They come equipped with a holomorphic submersion to the complex projective line which under the period map corresponds to a twistor line in the K3-period domain. In this talk I will explain how one can view a twistor line as a certain base point in the linear cycle space of the period domain. Then, based on ...[+]

14J28 ; 14J60 ; 14C25 ; 53C26 ; 53C28

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Following Grothendieck's vision that a motive of an algebraic variety should capture many of its cohomological invariants, Voevodsky introduced a triangulated category of motives which partially realises this idea. After describing some of the properties of this category, I explain how to define the motive of certain algebraic stacks. I will then focus on defining and studying the motive of the moduli stack of vector bundles on a smooth projective curve and show that this motive can be described in terms of the motive of this curve and its symmetric powers. If there is time, I will give a conjectural formula for this motive, and explain how this follows from a conjecture on the intersection theory of certain Quot schemes. This is joint work with Simon Pepin Lehalleur.[-]
Following Grothendieck's vision that a motive of an algebraic variety should capture many of its cohomological invariants, Voevodsky introduced a triangulated category of motives which partially realises this idea. After describing some of the properties of this category, I explain how to define the motive of certain algebraic stacks. I will then focus on defining and studying the motive of the moduli stack of vector bundles on a smooth ...[+]

14A20 ; 14C25 ; 14C15 ; 14D23 ; 14F42 ; 14H60 ; 18E30 ; 19E15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraic cycles on varieties over finite fields - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Post-edited

Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to understand. One then construct maps called "cycle class maps" from Chow groups to several cohomological theories.
In this talk, we focus on the case of a variety $X$ over a finite field. In this case, Tate conjecture claims the surjectivity of the cycle class map with rational coefficients; this conjecture is still widely open. In case of integral coefficients, we speak about the integral version of the conjecture and we know several counterexamples for the surjectivity. In this talk, we present a survey of some well-known results on this subject and discuss other properties of algebraic cycles which are either proved or expected to be true. We also discuss several involved methods.[-]
Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to ...[+]

14C25 ; 14G15 ; 14J70 ; 14C15 ; 14H05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
After inverting 2, the motivic sphere spectrum splits into a plus part and a minus part with respect to a certain natural involution. Cisinsky and Déglise have shown that, with rational coefficients, the plus part is given by rational motivic cohomlogy. With Ananyevskiy and Panin, we have computed the minus part with rational coefficients as being given by rational Witt-theory. In particular, this shows that the rational bi-graded homotopy sheaves of the minus sphere are concentrated in bi-degree (n,n). This may be rephrased as saying that the graded homotopy sheaves of the minus sphere in strictly positive topological degree are torsion. Combined with the result of Cisinski-Déglise mentioned above, this shows that the graded homotopy sheaves of the sphere spectrum in strictly positive topological degree and non-negative Tate degree are torsion, an analog of the classical theorem of Serre, that the stable homotopy groups of spheres in strictly positive degree are finite.[-]
After inverting 2, the motivic sphere spectrum splits into a plus part and a minus part with respect to a certain natural involution. Cisinsky and Déglise have shown that, with rational coefficients, the plus part is given by rational motivic cohomlogy. With Ananyevskiy and Panin, we have computed the minus part with rational coefficients as being given by rational Witt-theory. In particular, this shows that the rational bi-graded homotopy ...[+]

14C25 ; 14F42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Le troisième groupe de cohomologie non ramifiée d'une variété lisse, à coefficients dans les racines de l'unité tordues deux fois, intervient dans plusieurs articles récents, en particulier en relation avec le groupe de Chow de codimension 2. On fera un tour d'horizon : espaces homogènes de groupes algébriques linéaires; variétés rationnellement connexes sur les complexes; images d'applications cycle sur les complexes, sur un corps fini, sur un corps de nombres.[-]
Le troisième groupe de cohomologie non ramifiée d'une variété lisse, à coefficients dans les racines de l'unité tordues deux fois, intervient dans plusieurs articles récents, en particulier en relation avec le groupe de Chow de codimension 2. On fera un tour d'horizon : espaces homogènes de groupes algébriques linéaires; variétés rationnellement connexes sur les complexes; images d'applications cycle sur les complexes, sur un corps fini, sur un ...[+]

19E15 ; 14C35 ; 14C25 ; 14E08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Stable rationality - Lecture 1 - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Post-edited

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stable rationality - Lecture 3 - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Multi angle

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gonality and zero-cycles of abelian varieties - Voisin, Claire (Auteur de la Conférence) | CIRM H

Multi angle

The gonality of a variety is defined as the minimal gonality of curve sitting in the variety. We prove that the gonality of a very general abelian variety of dimension $g$ goes to infinity with $g$. We use for this a (straightforward) generalization of a method due to Pirola that we will describe. The method also leads to a number of other applications concerning $0$-cycles modulo rational equivalence on very general abelian varieties.

14C15 ; 14C25 ; 14J70 ; 14J28 ; 14H51 ; 14Kxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Computing Ceresa classes of curves - Srinivasan, Padmavathi (Auteur de la Conférence) | CIRM H

Multi angle

The Ceresa class is the image under a cycle class map of a canonical algebraic cycle associated to a curve in its Jacobian. This class vanishes for all hyperelliptic curves, and is known to be non-vanishing for the generic curve of genus at least 3. It is necessary for the Ceresa class to have infinite order for the Galois action on the fundamental group of a curve to have big image. We will present an algorithm for certifying that a curve over a number field has infinite order Ceresa class.

N.B. This is preliminary joint work with Jordan Ellenberg, Adam Logan and Akshay Venkatesh.[-]
The Ceresa class is the image under a cycle class map of a canonical algebraic cycle associated to a curve in its Jacobian. This class vanishes for all hyperelliptic curves, and is known to be non-vanishing for the generic curve of genus at least 3. It is necessary for the Ceresa class to have infinite order for the Galois action on the fundamental group of a curve to have big image. We will present an algorithm for certifying that a curve over ...[+]

14C25 ; 14H25 ; 14Q05 ; 11G30 ; 11G40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Decomposition of the diagonal and applications - Totaro, Burt (Auteur de la Conférence) | CIRM H

Multi angle

Decomposition of the diagonal is a basic method in the theory of algebraic cycles. The method relates the birational geometry of a variety to properties of the Chow groups. One recent application is that the Chow ring of a finite group can depend nontrivially on the base field, even for fields containing the algebraic closure of $Q$. Another application is that a very general complex hypersurface in $P^{n+1}$ of degree at least about 2n/3 is not stably rational.[-]
Decomposition of the diagonal is a basic method in the theory of algebraic cycles. The method relates the birational geometry of a variety to properties of the Chow groups. One recent application is that the Chow ring of a finite group can depend nontrivially on the base field, even for fields containing the algebraic closure of $Q$. Another application is that a very general complex hypersurface in $P^{n+1}$ of degree at least about 2n/3 is not ...[+]

14C15 ; 14C25

Sélection Signaler une erreur