Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove that the solution to the Benjamin-Ono equation on the line, with initial data given by minus a soliton, exhibits scattering in infinite time. Our approach relies on an explicit formula for solutions with rational initial data in L2 having only simple poles. This formula is expressed as a ratio of determinants involving contour integrals. Additionally, we develop some spectral properties of the Lax operator associated with the Benjamin-Ono equation. This work is in collaboration with Elliot Blackstone, Patrick Gérard, and Peter D. Miller
[-]
We prove that the solution to the Benjamin-Ono equation on the line, with initial data given by minus a soliton, exhibits scattering in infinite time. Our approach relies on an explicit formula for solutions with rational initial data in L2 having only simple poles. This formula is expressed as a ratio of determinants involving contour integrals. Additionally, we develop some spectral properties of the Lax operator associated with the B...
[+]
35C05 ; 35Q51 ; 37K10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and near-field limit of a broad class of solutions of the same equation. In this talk, we will present several recent results on the emergence of these special solutions along with their interesting asymptotic and exact properties. Notably, these solutions exhibit anomalously slow temporaldecay and are connected to the third Painlev´e equation. Finally, we will extend the emergence of rogue waves of infinite order to the first several flows of the AKNS hierarchy — allowing for arbitrarily many simultaneous flows — and report on recent work regarding their space-time asymptotic behavior under a general flow from the hierarchy.
[-]
The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and ...
[+]
35Q55 ; 35Q15 ; 35Q51 ; 37K10 ; 37K15 ; 37K40 ; 34M55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up multi-solitary waves blowing up in infinite time with logarithmic rate.
These special behaviours are due to strong interactions between the waves, in contrast with most previous works on multi-solitary waves of (NLS) where interactions do not affect the general behaviour of each solitary wave.
[-]
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up ...
[+]
35Q55 ; 76B25 ; 35Q51 ; 35C08
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
It is possible to model dissipation effects subjected by a particle by interactions between the particle and its environment. This seminal idea dates back to Caldeira-Leggett in the '80ies. The specific case of a particle interacting with vibrational degrees of freedom has been thoroughsly investigated by S. De Bièvre and his collaborators. We will go back to these issues in the framework of kinetic equations, and also consider quantum versions of the problem based on couplings with the Schrödinger equation. We are particularly interested in stability issues. We will describe ; through rigorous statements and numerical experiments, analogies and differences with the case of a single classical particle and with the standard coupling with the Poisson equation.
[-]
It is possible to model dissipation effects subjected by a particle by interactions between the particle and its environment. This seminal idea dates back to Caldeira-Leggett in the '80ies. The specific case of a particle interacting with vibrational degrees of freedom has been thoroughsly investigated by S. De Bièvre and his collaborators. We will go back to these issues in the framework of kinetic equations, and also consider quantum versions ...
[+]
35Q40 ; 35Q51 ; 35Q55