En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53C26 7 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Twistor spaces of K3 surfaces are non-Kähler compact complex manifolds which play a fundamental role in the moduli theory of K3 surfaces. They come equipped with a holomorphic submersion to the complex projective line which under the period map corresponds to a twistor line in the K3-period domain. In this talk I will explain how one can view a twistor line as a certain base point in the linear cycle space of the period domain. Then, based on joint work in progress with Daniel Greb, Tim Kirschner and Martin Schwald I will present new results concerning the deformations of twistor spaces of K3 surfaces and their relation to the cycle space of the period domain.[-]
Twistor spaces of K3 surfaces are non-Kähler compact complex manifolds which play a fundamental role in the moduli theory of K3 surfaces. They come equipped with a holomorphic submersion to the complex projective line which under the period map corresponds to a twistor line in the K3-period domain. In this talk I will explain how one can view a twistor line as a certain base point in the linear cycle space of the period domain. Then, based on ...[+]

14J28 ; 14J60 ; 14C25 ; 53C26 ; 53C28

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will review a conjecture (joint work with Davide Gaiotto and Greg Moore) which gives a description of the hyperkähler metric on the moduli space of Higgs bundles, and recent joint work with David Dumas which has given evidence that the conjecture is true in the case of $SL(2)$-Higgs bundles.

32Q20 ; 53C07 ; 53C55 ; 53C26 ; 81T13 ; 81T60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The large scale geometry of the Higgs bundle moduli space - Swoboda, Jan (Auteur de la conférence) | CIRM H

Multi angle

In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a Higgs field $\Phi$ on $\Sigma$. I will show that on the regular part of the Hitchin fibration ($A$, $\Phi$) $\rightarrow$ det $\Phi$ this metric is well-approximated by the semiflat metric $G_{sf}$ coming from the completely integrable system on $\mathcal{M}$. This also reveals the asymptotically conic structure of $G_{L^2}$, with (generic) fibres of the above fibration being asymptotically flat tori. This result confirms some aspects of a more general conjectural picture made by Gaiotto, Moore and Neitzke. Its proof is based on a detailed understanding of the ends structure of $\mathcal{M}$. The analytic methods used there in addition yield a complete asymptotic expansion of the difference $G_{L^2} − G_{sf}$ between the two metrics.[-]
In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a ...[+]

53C07 ; 53C26 ; 53D18 ; 14H60 ; 14D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The decomposition theorem: the smooth case - Beauville, Arnaud (Auteur de la conférence) | CIRM H

Virtualconference

The decomposition theorem gives some insight on the structure of compact Kähler manifolds with trivial first Chern class. In the first part of the talk I will try to summarize the history of the problem, from the Calabi conjecture to its proof by Yau; in the second part I will explain why the result is an easy consequence of Yau's theorem.

14J32 ; 53C26

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss the existence of hyperkähler structures on local symplectic groupoids integrating holomorphic Poisson manifolds, and show that they always exist when the base is a Poisson surface. The hyperkähler structure is obtained by constructing the twistor space by lifting specific deformations of the Poisson surface adapted from Hitchin's unobstructedness result. In the special case of the zero Poisson structure, we recover the Feix-Kaledin hyperkähler structure on the cotangent bundle of a Kähler manifold.[-]
I will discuss the existence of hyperkähler structures on local symplectic groupoids integrating holomorphic Poisson manifolds, and show that they always exist when the base is a Poisson surface. The hyperkähler structure is obtained by constructing the twistor space by lifting specific deformations of the Poisson surface adapted from Hitchin's unobstructedness result. In the special case of the zero Poisson structure, we recover the Fe...[+]

53D17 ; 53C26 ; 53C28 ; 32G05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Real structures on hyper-Kähler manifolds - Fu, Lie (Auteur de la conférence) | CIRM H

Multi angle

Great achievements have been made towards the study of realstructures on K3 surfaces. I will report on an attempt to generalize some of these results to higher dimensional analogs of K3 surfaces, namely, the so-called compact hyper-Kähler manifolds. The emphasis will be on finiteness properties of their (Klein) automorphism groups. In particular, we show that there are only finitely many real structures on a given compact hyper-Kähler manifold. It is based on a joint work with Andrea Cattaneo.[-]
Great achievements have been made towards the study of realstructures on K3 surfaces. I will report on an attempt to generalize some of these results to higher dimensional analogs of K3 surfaces, namely, the so-called compact hyper-Kähler manifolds. The emphasis will be on finiteness properties of their (Klein) automorphism groups. In particular, we show that there are only finitely many real structures on a given compact hyper-Kähler manifold. ...[+]

14P99 ; 14J50 ; 53C26

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur