En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11D61 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the 1980's we developed an effective specialization method and used it to prove effective finiteness theorems for Thue equations, decomposable form equations and discriminant equations over a restricted class of finitely generated domains (FGD's) over $\mathbb{Z}$ which may contain not only algebraic but also transcendental elements. In 2013 we refined with Evertse the method and combined it with an effective result of Aschenbrenner (2004) concerning ideal membership in polynomial rings over $\mathbb{Z}$ to establish effective results over arbitrary FGD's over $\mathbb{Z}$. By means of our method general effective finiteness theorems have been obtained in quantitative form for several classical Diophantine equations over arbitrary FGD's, including unit equations, discriminant equations (Evertse and Gyory, 2013, 2017), Thue equations, hyper- and superelliptic equations, the Schinzel–Tijdeman equation (Bérczes, Evertse and Gyory, 2014), generalized unit equations (Bérczes, 2015), and the Catalan equation (Koymans, 2015). In the first part of the talk we shall briefly survey these results. Recently we proved with Evertse effective finiteness theorems in quantitative form for norm form equations, discriminant form equations and more generally for decomposable form equations over arbitrary FGD's. In the second part, these new results will be presented. Some applications will also be discussed.[-]
In the 1980's we developed an effective specialization method and used it to prove effective finiteness theorems for Thue equations, decomposable form equations and discriminant equations over a restricted class of finitely generated domains (FGD's) over $\mathbb{Z}$ which may contain not only algebraic but also transcendental elements. In 2013 we refined with Evertse the method and combined it with an effective result of Aschenbrenner (2004) ...[+]

11D57 ; 11D61 ; 11D72

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Skolem's conjecture and exponential Diophantine equations - Hajdu, Lajos (Auteur de la Conférence) | CIRM H

Virtualconference

Exponential Diophantine equations, say of the form (1) $u_{1}+...+u_{k}=b$ where the $u_{i}$ are exponential terms with fixed integer bases and unknown exponents and b is a fixed integer, play a central role in the theory of Diophantine equations, with several applications of many types. However, we can bound the solutions only in case of k = 2 (by results of Gyory and others, based upon Baker's method), for k > 2 only the number of so-called non-degenerate solutions can be bounded (by the Thue-Siegel-Roth-Schmidt method; see also results of Evertse and others). In particular, there is a big need for a method which is capable to solve (1) completely in concrete cases.
Skolem's conjecture (roughly) says that if (1) has no solutions, then it has no solutions modulo m with some m. In the talk we present a new method which relies on the principle behind the conjecture, and which (at least in principle) is capable to solve equations of type (1), for any value of k. We give several applications, as well. Then we provide results towards the solution of Skolem's conjecture. First we show that in certain sense it is 'almost always' valid. Then we provide a proof for the conjecture in some cases with k = 2, 3. (The handled cases include Catalan's equation and Fermat's equation, too - the precise connection will be explained in the talk). Note that previously Skolem's conjecture was proved only for k = 1, by Schinzel.
The new results presented are (partly) joint with Bertok, Berczes, Luca, Tijdeman.[-]
Exponential Diophantine equations, say of the form (1) $u_{1}+...+u_{k}=b$ where the $u_{i}$ are exponential terms with fixed integer bases and unknown exponents and b is a fixed integer, play a central role in the theory of Diophantine equations, with several applications of many types. However, we can bound the solutions only in case of k = 2 (by results of Gyory and others, based upon Baker's method), for k > 2 only the number of so-called ...[+]

11D41 ; 11D61 ; 11D79

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Fibonacci numbers and repdigits - Luca, Florian (Auteur de la Conférence) | CIRM H

Virtualconference

In the first part of the talk we will survey known results concerning Fibonacci numbers whose digital representations in base 10 display some interesting patterns. In the second part of the talk we will give the main steps of the proof of a recent result which states that $b = 4$ is the only integer ≥ 2 such that there are two Fibonacci numbers larger than 1 which are repunits in base b. In this case, $F_{5}=(4^{2}-1)/(4-1)$ and $F_{8}=(4^{3}-1)/(4-1)$. This is joint work with C. A. Gomez and J. C. Gomez from Cali, Colombia.[-]
In the first part of the talk we will survey known results concerning Fibonacci numbers whose digital representations in base 10 display some interesting patterns. In the second part of the talk we will give the main steps of the proof of a recent result which states that $b = 4$ is the only integer ≥ 2 such that there are two Fibonacci numbers larger than 1 which are repunits in base b. In this case, $F_{5}=(4^{2}-1)/(4-1)$ and $F_{8}=...[+]

11A63 ; 11B39 ; 11D61

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On S-Diophantine Tuples - Ziegler, Volker (Auteur de la Conférence) | CIRM H

Virtualconference

Given a finite set of primes $S$ and a m-tuple $(a_{1},...,a_{m})$ of positive, distinct integers we call the m-tuple $S$-Diophantine, if for each 1 ≤ i < j ≤ m the quantity $a_{i}a_{j}+1$ has prime divisors coming only from the set $S$. In this talk we discuss the existence of m-tuples if the set of primes $S$ is small. We will discuss recent results concerning the case that $|S| = 2$ and $|S| = 3$.

11D61 ; 11Y50 ; 11A51

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For any fixed coprime positive integers a, b and c with min{a, b, c} > 1, we prove that the equation $a^{x}+b^{y}=c^{z}$ has at most two solutions in positive integers x, y and z, except for one specific case which exactly gives three solutions. Our result is essentially sharp in the sense that there are infinitely many examples allowing the equation to have two solutions in positive integers. From the viewpoint of a well-known generalization of Fermat's equation, it is also regarded as a 3-variable generalization of the celebrated theorem of Bennett [M.A.Bennett, On some exponential equations of S.S.Pillai, Canad. J. Math. 53(2001), no.2, 897–922] which asserts that Pillai's type equation $a^{x}-b^{y}=c$ has at most two solutions in positive integers x and y for any fixed positive integers a, b and c with min {a, b} > 1. In this talk we give a brief summary of corresponding earlier results and present the main improvements leading to this definitive result. This is a joint work with T. Miyazaki.[-]
For any fixed coprime positive integers a, b and c with min{a, b, c} > 1, we prove that the equation $a^{x}+b^{y}=c^{z}$ has at most two solutions in positive integers x, y and z, except for one specific case which exactly gives three solutions. Our result is essentially sharp in the sense that there are infinitely many examples allowing the equation to have two solutions in positive integers. From the viewpoint of a well-known generalization of ...[+]

11D61 ; 11D41 ; 11D45

Sélection Signaler une erreur