En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11K50 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show how to construct 'simple' symbolic dynamical systems in terms of renormalisation schemes associated with multidimensional continued fractions. Continued fractions are used here to generate infinite words thanks to the iteration of infinite sequences of substitutions. Simple means that these symbolic systems have a linear number of factors of a given length, or that they have pure discrete spectrum, or else, that they have a low symbolic discrepancy. We also discuss the relation between these notions.[-]
We show how to construct 'simple' symbolic dynamical systems in terms of renormalisation schemes associated with multidimensional continued fractions. Continued fractions are used here to generate infinite words thanks to the iteration of infinite sequences of substitutions. Simple means that these symbolic systems have a linear number of factors of a given length, or that they have pure discrete spectrum, or else, that they have a low symbolic ...[+]

37B10 ; 11K50 ; 68R15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.
It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy's program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.
Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy's program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).
Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin's idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.
It is the aim of my series of lectures to review the above results.[-]
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword ...[+]

11B83 ; 11K50 ; 37B10 ; 52C23 ; 53D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Symbolic bounded remainder sets - Berthé, Valérie (Auteur de la Conférence) | CIRM H

Multi angle

Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded discrepancy provides particularly strong convergence properties of ergodic sums. It is also closely related to the notions of balance in word combinatorics.[-]
Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded ...[+]

37B10 ; 11K50 ; 37A30 ; 28A80 ; 11J70 ; 11K38

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aim of this lecture is to find good symbolic codings for translations on the $d$-dimensional torus that enjoy the well-known and nice properties of Sturmian sequences (as for instance low complexity and good local discrepancy properties, i.e., bounded remainder sets of any scale). Inspired by the approach of G. Rauzy we construct such codings by the use of multidimensional continued fraction algorithms that are realized by sequences of substitutions. This is joint work with V. Berthé and W. Steiner.[-]
The aim of this lecture is to find good symbolic codings for translations on the $d$-dimensional torus that enjoy the well-known and nice properties of Sturmian sequences (as for instance low complexity and good local discrepancy properties, i.e., bounded remainder sets of any scale). Inspired by the approach of G. Rauzy we construct such codings by the use of multidimensional continued fraction algorithms that are realized by sequences of ...[+]

37B10 ; 37A30 ; 11K50 ; 28A80

Sélection Signaler une erreur