En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 28A80 18 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the numerical evaluation of integrals with respect to self-similar measures supported on fractal sets, with a weakly singular integrand of loga-rithmic or algebraic type. We show that, in many cases, the self-similarity of the measures, combined with the homogeneity properties of the integrand, can be exploited to express the singular integral exactly in terms of regular inte-grals, which can be readily approximated numerically using e.g. a composite barycentre rule. Our approach applies to measures supported on many well-known fractals including Cantor sets and dusts, the Sierpinski triangle, carpet and tetrahedron, the Vicsek fractal, and the Koch snowflake. We illustrate our approach via numerical examples computed using our IFSIntegrals.jl Julia code. This is joint work with Andrew Gibbs, Botond Major and Andrea Moiola.[-]
We consider the numerical evaluation of integrals with respect to self-similar measures supported on fractal sets, with a weakly singular integrand of loga-rithmic or algebraic type. We show that, in many cases, the self-similarity of the measures, combined with the homogeneity properties of the integrand, can be exploited to express the singular integral exactly in terms of regular inte-grals, which can be readily approximated numerically using ...[+]

28A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss recent progress on understanding the dimension of self-similar sets and measures. The main conjecture in this field is that the only way that the dimension of such a fractal can be "non-full" is if the semigroup of contractions which define it is not free. The result I will discuss is that "non-full" dimension implies "almost non-freeness", in the sense that there are distinct words in the semigroup which are extremely close together (super-exponentially in their lengths). Applications include resolution of some conjectures of Furstenberg on the dimension of sumsets and, together with work of Shmerkin, progress on the absolute continuity of Bernoulli convolutions. The main new ingredient is a statement in additive combinatorics concerning the structure of measures whose entropy does not grow very much under convolution. If time permits I will discuss the analogous results in higher dimensions.[-]
I will discuss recent progress on understanding the dimension of self-similar sets and measures. The main conjecture in this field is that the only way that the dimension of such a fractal can be "non-full" is if the semigroup of contractions which define it is not free. The result I will discuss is that "non-full" dimension implies "almost non-freeness", in the sense that there are distinct words in the semigroup which are extremely close ...[+]

28A80 ; 37A10 ; 03D99 ; 54H20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Curvature measures of random sets - Zähle, Martina (Auteur de la Conférence) | CIRM H

Multi angle

A survey on some developments in curvature theory for random sets will be given. We first consider previous models with classical singularities like polyconvex sets or unions of sets with positive reach. The main part of the talk concerns extensions to certain classes of random fractals which have been investigated in the last years. In these cases limits of rescaled versions for suitable approximations are used.

53C65 ; 52A22 ; 60D05 ; 28A80 ; 28A75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Algebraic sums and products of univoque bases - Dajani, Karma (Auteur de la Conférence) | CIRM H

Multi angle

Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal U}(x)^{\lambda}$ contain an interval for all $x\in (0, 1]$ and $\lambda\ne 0$. As an application we show that the same phenomenon occurs for the set of non-matching parameters associated with the family of symmetric binary expansions studied recently by the first speaker and C. Kalle.
This is joint work with V. Komornik, D. Kong and W. Li.[-]
Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal ...[+]

28A80 ; 11A63 ; 37B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for explicit values of the parameter.[-]
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for ...[+]

28A80 ; 37C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for explicit values of the parameter.[-]
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for ...[+]

28A80 ; 37C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for explicit values of the parameter.[-]
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for ...[+]

28A80 ; 37C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for explicit values of the parameter.[-]
In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive combinatorics and present some of the main applications, including the smoothness of Bernoulli convolutions outside of a small set of exceptions, and for ...[+]

28A80 ; 37C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Symbolic bounded remainder sets - Berthé, Valérie (Auteur de la Conférence) | CIRM H

Multi angle

Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded discrepancy provides particularly strong convergence properties of ergodic sums. It is also closely related to the notions of balance in word combinatorics.[-]
Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded ...[+]

37B10 ; 11K50 ; 37A30 ; 28A80 ; 11J70 ; 11K38

Sélection Signaler une erreur