Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will talk about joint work during the recent years with Amin Gholampour, Richard Thomas and Yukinobu Toda, on proving the modularity property of the generating series of certain DT invariants of torsion sheaves with two dimensional support in ambient threefolds. More specifically, I will talk about algebraic-geometric proof of S-duality conjecture in superstring theory made formerly by physicists: Gaiotto, Strominger, Yin, regarding the modularity of DT invariants of sheaves supported on hyperplane sections of the quintic Calabi-Yau threefold. Our strategy is to first use degeneration and localization techniques to reduce the threefold theory to a certain intersection theory over relative Hilbert scheme of points on surfaces and then prove modularity; More precisely, together with Gholampour we have proven that the generating series, associated to the top intersection numbers of the Hibert scheme of points, relative to an effective divisor, on a smooth quasi-projective surface is a modular form. This is a generalization of the result of Okounkov-Carlsson for absolute Hilbert schemes. These intersection numbers, together with the generating series of Noether-Lefschetz numbers, will provide the ingrediants to prove modularity of the above DT invariants over the quintic threefold.
[-]
I will talk about joint work during the recent years with Amin Gholampour, Richard Thomas and Yukinobu Toda, on proving the modularity property of the generating series of certain DT invariants of torsion sheaves with two dimensional support in ambient threefolds. More specifically, I will talk about algebraic-geometric proof of S-duality conjecture in superstring theory made formerly by physicists: Gaiotto, Strominger, Yin, regarding the ...
[+]
14J30 ; 14N35 ; 81T30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will provide a brief and gentle introduction to Witten's conjecture, which predicts that the generating series of certain intersection numbers on the moduli space of curves is a tau function of the KdV integrable hierarchy, as a motivation for r-spin Witten's conjecture that concerns much more complicated geometric objects and specialises to the original conjecture for r=2. The r=2 conjecture was proved for the first time by Kontsevich making use of maps arising from a cubic hermitian matrix model with an external field. Together with R. Belliard, S. Charbonnier and B. Eynard, we studied the combinatorial model that generalises Kontsevich maps to higher r. Making use of some auxiliary models we manage to find a Tutte-like recursion for these maps and to massage it into a topological recursion. We also show a relation between a particular case of our maps and the r-spin intersection numbers, which allows us to prove that these satisfy topological recursion. Finally, I will explain how, in joint work with G. Borot and S. Charbonnier, we relate another specialisation of our models to fully simple maps, and how this identification helps us prove that fully simple maps satisfy topological recursion for the spectral curve in which one exchanges x and y from the spectral curve for ordinary maps. This solved a conjecture from G. Borot and myself from '17.
[-]
In this talk I will provide a brief and gentle introduction to Witten's conjecture, which predicts that the generating series of certain intersection numbers on the moduli space of curves is a tau function of the KdV integrable hierarchy, as a motivation for r-spin Witten's conjecture that concerns much more complicated geometric objects and specialises to the original conjecture for r=2. The r=2 conjecture was proved for the first time by ...
[+]
05C30 ; 05A15 ; 14N35 ; 37K10 ; 14H70 ; 14N10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We report on the development of localization methods useful for quadratic enumerative invariants, replacing the classical Gm-action with an action by the normalizer of the diagonal torus in SL2.
We discuss applications to quadratic counts of twisted cubics in hypersurfaces and complete intersections (joint with Sabrina Pauli) as well as work by Anneloes Vierever, and our joint work with Viergever on quadratic DT invariants for Hilbert schemes of points on P3 and on (P1)3.
[-]
We report on the development of localization methods useful for quadratic enumerative invariants, replacing the classical Gm-action with an action by the normalizer of the diagonal torus in SL2.
We discuss applications to quadratic counts of twisted cubics in hypersurfaces and complete intersections (joint with Sabrina Pauli) as well as work by Anneloes Vierever, and our joint work with Viergever on quadratic DT invariants for Hilbert schemes of ...
[+]
14F42 ; 19E15 ; 14N35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Odd symplectic Grassmannians are a family of quasi-homogeneous varieties with properties nevertheless similar to those of homogeneous spaces, such as the existence of a Schubert-type cohomology basis. In this talk based on joint work with Ryan Shifler, I will explain how to construct their curve neighbourhoods. Curve neighbourhoods were first introduced by Buch, Chaput, Mihalcea and Perrin in the homogeneous setting: it is the union of all rational curves of fixed degree passing through a given Schubert variety. Potential applications include the computation of minimal degrees in quantum cohomology.
[-]
Odd symplectic Grassmannians are a family of quasi-homogeneous varieties with properties nevertheless similar to those of homogeneous spaces, such as the existence of a Schubert-type cohomology basis. In this talk based on joint work with Ryan Shifler, I will explain how to construct their curve neighbourhoods. Curve neighbourhoods were first introduced by Buch, Chaput, Mihalcea and Perrin in the homogeneous setting: it is the union of all ...
[+]
14N35 ; 14N15 ; 14M15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In 2007, Fan, Jarvis, and Ruan constructed an analogue of the Gromov-Witten (GW) theory of hypersurfaces in weighted projective spaces. The new theory is attached to quasi-homogeneous polynomial singularities and is usually called Fan-Jarvis-Ruan-Witten theory (FJRW). It is part of the general picture of Witten, where GW and FJRW theories arise as two distinct GIT quotients of the same model. I will first explain this idea under the light of mirror symmetry. Then I will present FJRW theory and the geometric problem it illustrates. In particular, I will highlight a geometric property called concavity. For now, it is a necessary condition for explicit results on GW theory of hypersurfaces. But on the FJRW side, the situation has recently changed and I will describe my method based on Koszul cohomology to overcome this difficulty. As a consequence, I obtain a mirror symmetry theorem without concavity.
[-]
In 2007, Fan, Jarvis, and Ruan constructed an analogue of the Gromov-Witten (GW) theory of hypersurfaces in weighted projective spaces. The new theory is attached to quasi-homogeneous polynomial singularities and is usually called Fan-Jarvis-Ruan-Witten theory (FJRW). It is part of the general picture of Witten, where GW and FJRW theories arise as two distinct GIT quotients of the same model. I will first explain this idea under the light of ...
[+]
14H70 ; 14H81 ; 14N35 ; 14B05